These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21716213)

  • 1. [The virtual modeling of the robotic-assisted operations in abdominal surgery].
    Berelavichus SV; Karmazanovskiĭ GG; Kriger AG; Fedorov AV; Shirokov VS; Kondrat'ev EV; Gorin DS
    Khirurgiia (Mosk); 2011; (6):18-21. PubMed ID: 21716213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Robotic and telerobotic surgical systems for abdominal surgery].
    Córdova Dupeyrat A; Ballantyne GH
    Rev Gastroenterol Peru; 2003; 23(1):58-66. PubMed ID: 12768216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual model surgery for efficient planning and surgical performance.
    McCormick SU; Drew SJ
    J Oral Maxillofac Surg; 2011 Mar; 69(3):638-44. PubMed ID: 21353926
    [No Abstract]   [Full Text] [Related]  

  • 5. [Robotic-assisted operations in digestive and endocrine surgery using Da Vinci system].
    Bresler L
    Ann Chir; 2006 May; 131(5):299-301. PubMed ID: 16630532
    [No Abstract]   [Full Text] [Related]  

  • 6. Single-port laparoscopic and robotic partial nephrectomy.
    Kaouk JH; Goel RK
    Eur Urol; 2009 May; 55(5):1163-9. PubMed ID: 19185415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel laparoscopic mesh placement part task trainer.
    Devarajan V; Wang X; Shen Y; Eberhart R; Watson MJ; Jones D; Villegas L
    Int J Med Robot; 2006 Dec; 2(4):312-20. PubMed ID: 17520649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel virtual reality environment for preoperative planning and simulation of image guided intracardiac surgeries with robotic manipulators.
    Yeniaras E; Deng Z; Syed MA; Davies MG; Tsekos NV
    Stud Health Technol Inform; 2011; 163():716-22. PubMed ID: 21335887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technological advances in robotic-assisted laparoscopic surgery.
    Tan GY; Goel RK; Kaouk JH; Tewari AK
    Urol Clin North Am; 2009 May; 36(2):237-49, ix. PubMed ID: 19406324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-enhanced robotic telesurgery. Initial experience in foregut surgery.
    Melvin WS; Needleman BJ; Krause KR; Schneider C; Wolf RK; Michler RE; Ellison EC
    Surg Endosc; 2002 Dec; 16(12):1790-2. PubMed ID: 12239646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of in-vivo force response of intra-abdominal soft tissues for surgical simulation.
    Tay BK; Stylopoulos N; De S; Rattner DW; Srinivasan MA
    Stud Health Technol Inform; 2002; 85():514-9. PubMed ID: 15458143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing splints for orthognathic surgery using a three-dimensional printer.
    Metzger MC; Hohlweg-Majert B; Schwarz U; Teschner M; Hammer B; Schmelzeisen R
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Feb; 105(2):e1-7. PubMed ID: 18230371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules.
    Cimerman M; Kristan A
    Injury; 2007 Apr; 38(4):442-9. PubMed ID: 17400226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic hysterectomy versus conventional laparoscopic hysterectomy: outcome and cost analyses of a matched case-control study.
    Sarlos D; Kots L; Stevanovic N; Schaer G
    Eur J Obstet Gynecol Reprod Biol; 2010 May; 150(1):92-6. PubMed ID: 20207063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical technique enhances the efficiency of robotic hysterectomy.
    Feuer G; Hernandez P; Barker J
    Int J Med Robot; 2011 Mar; 7(1):1-6. PubMed ID: 21341356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.
    Ng I; Hwang PY; Kumar D; Lee CK; Kockro RA; Sitoh YY
    Acta Neurochir (Wien); 2009 May; 151(5):453-63; discussion 463. PubMed ID: 19319471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new era in laparoscopic surgery. Evaluation of robot-assisted laparoscopic procedures.
    Khairy GA; Fouda M; Abdulkarim A; Al-Saigh A; Al-Kattan K
    Saudi Med J; 2005 May; 26(5):777-80. PubMed ID: 15951869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Registration accuracy in computer-assisted pelvic surgery.
    Docquier PL; Paul L; Cartiaux O; Banse X
    Comput Aided Surg; 2009; 14(1-3):37-44. PubMed ID: 19521889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.