These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 21716259)

  • 1. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis.
    Chen YT; Chang FC; Wu CF; Chou YH; Hsu HL; Chiang WC; Shen J; Chen YM; Wu KD; Tsai TJ; Duffield JS; Lin SL
    Kidney Int; 2011 Dec; 80(11):1170-81. PubMed ID: 21716259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis.
    LeBleu VS; Kalluri R
    Kidney Int; 2011 Dec; 80(11):1119-21. PubMed ID: 22083636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis.
    Wu CF; Chiang WC; Lai CF; Chang FC; Chen YT; Chou YH; Wu TH; Linn GR; Ling H; Wu KD; Tsai TJ; Chen YM; Duffield JS; Lin SL
    Am J Pathol; 2013 Jan; 182(1):118-31. PubMed ID: 23142380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes.
    Wang M; Xu H; Li Y; Cao C; Zhu H; Wang Y; Zhao Z; Pei G; Zhu F; Yang Q; Deng X; Zhou C; Guo Y; Wu J; Liao W; Yang J; Yao Y; Zeng R
    Theranostics; 2020; 10(26):12144-12157. PubMed ID: 33204334
    [No Abstract]   [Full Text] [Related]  

  • 5. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis.
    Chang FC; Chou YH; Chen YT; Lin SL
    J Formos Med Assoc; 2012 Nov; 111(11):589-98. PubMed ID: 23217594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis.
    Yang J; Wang M; Zhu F; Sun J; Xu H; Chong Lee Shin OL; Zhao Z; Pei G; Zhu H; Cao C; He X; Huang Y; Ma Z; Liu L; Wang L; Ning Y; Liu W; Xu G; Wang X; Zeng R; Yao Y
    Stem Cell Res Ther; 2019 Mar; 10(1):104. PubMed ID: 30898157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway.
    Wang YC; Chen Q; Luo JM; Nie J; Meng QH; Shuai W; Xie H; Xia JM; Wang H
    Exp Mol Med; 2019 Mar; 51(3):1-11. PubMed ID: 30902967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1.
    Ren S; Johnson BG; Kida Y; Ip C; Davidson KC; Lin SL; Kobayashi A; Lang RA; Hadjantonakis AK; Moon RT; Duffield JS
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1440-5. PubMed ID: 23302695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt4/β-catenin signaling in medullary kidney myofibroblasts.
    DiRocco DP; Kobayashi A; Taketo MM; McMahon AP; Humphreys BD
    J Am Soc Nephrol; 2013 Sep; 24(9):1399-412. PubMed ID: 23766539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis.
    Martin IV; Borkham-Kamphorst E; Zok S; van Roeyen CR; Eriksson U; Boor P; Hittatiya K; Fischer HP; Wasmuth HE; Weiskirchen R; Eitner F; Floege J; Ostendorf T
    Am J Pathol; 2013 Jan; 182(1):107-17. PubMed ID: 23141925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Mechanism of the Pericyte-Myofibroblast Transition in Renal Interstitial Fibrosis: Core Fucosylation Regulation.
    Wang N; Deng Y; Liu A; Shen N; Wang W; Du X; Tang Q; Li S; Odeh Z; Wu T; Lin H
    Sci Rep; 2017 Dec; 7(1):16914. PubMed ID: 29209018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal ischemia-reperfusion induces a dysbalance of angiopoietins, accompanied by proliferation of pericytes and fibrosis.
    Khairoun M; van der Pol P; de Vries DK; Lievers E; Schlagwein N; de Boer HC; Bajema IM; Rotmans JI; van Zonneveld AJ; Rabelink TJ; van Kooten C; Reinders ME
    Am J Physiol Renal Physiol; 2013 Sep; 305(6):F901-10. PubMed ID: 23825073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation.
    Bijkerk R; de Bruin RG; van Solingen C; van Gils JM; Duijs JM; van der Veer EP; Rabelink TJ; Humphreys BD; van Zonneveld AJ
    Kidney Int; 2016 Jun; 89(6):1268-80. PubMed ID: 27165825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of platelet-derived growth factor signaling in healing myocardial infarcts.
    Zymek P; Bujak M; Chatila K; Cieslak A; Thakker G; Entman ML; Frangogiannis NG
    J Am Coll Cardiol; 2006 Dec; 48(11):2315-23. PubMed ID: 17161265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring.
    Tang PM; Zhou S; Li CJ; Liao J; Xiao J; Wang QM; Lian GY; Li J; Huang XR; To KF; Ng CF; Chong CC; Ma RC; Lee TL; Lan HY
    Kidney Int; 2018 Jan; 93(1):173-187. PubMed ID: 29042082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice.
    Nakagawa N; Yuhki K; Kawabe J; Fujino T; Takahata O; Kabara M; Abe K; Kojima F; Kashiwagi H; Hasebe N; Kikuchi K; Sugimoto Y; Narumiya S; Ushikubi F
    Kidney Int; 2012 Jul; 82(2):158-71. PubMed ID: 22513820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of PDGFs/PDGFRs signaling pathway in myocardial fibrosis of DOCA/salt hypertensive rats.
    Fan B; Ma L; Li Q; Wang L; Zhou J; Wu J
    Int J Clin Exp Pathol; 2014; 7(1):16-27. PubMed ID: 24427322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of transforming growth factor β(1) in the transition of bone marrow-derived macrophages into myofibroblasts during renal fibrosis].
    Yang Y; Feng XJ; Liu XY; Wang LH; Zheng GP
    Zhonghua Nei Ke Za Zhi; 2017 Aug; 56(8):610-613. PubMed ID: 28789496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of fibrosis: the role of the pericyte.
    Schrimpf C; Duffield JS
    Curr Opin Nephrol Hypertens; 2011 May; 20(3):297-305. PubMed ID: 21422927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pathomechanisms of pericyte-myofibroblast transition in kidney and interventional effects of Chinese herbal medicine].
    Liu YL; Shi G; Cao DW; Wan YG; Wu W; Tu Y; Liu BH; Han WB; Yao J
    Zhongguo Zhong Yao Za Zhi; 2018 Nov; 43(21):4192-4197. PubMed ID: 30583616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.