These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Britt JP; Benaliouad F; McDevitt RA; Stuber GD; Wise RA; Bonci A Neuron; 2012 Nov; 76(4):790-803. PubMed ID: 23177963 [TBL] [Abstract][Full Text] [Related]
5. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission. Lintas A; Chi N; Lauzon NM; Bishop SF; Sun N; Tan H; Laviolette SR Eur J Neurosci; 2012 Jan; 35(2):279-90. PubMed ID: 22236063 [TBL] [Abstract][Full Text] [Related]
6. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. Floresco SB; Blaha CD; Yang CR; Phillips AG J Neurosci; 2001 Aug; 21(16):6370-6. PubMed ID: 11487660 [TBL] [Abstract][Full Text] [Related]
7. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward. Liu Z; Wang Y; Cai L; Li Y; Chen B; Dong Y; Huang YH J Neurosci; 2016 Jul; 36(30):7897-910. PubMed ID: 27466335 [TBL] [Abstract][Full Text] [Related]
8. Activation of Glutamatergic Fibers in the Anterior NAc Shell Modulates Reward Activity in the aNAcSh, the Lateral Hypothalamus, and Medial Prefrontal Cortex and Transiently Stops Feeding. Prado L; Luis-Islas J; Sandoval OI; Puron L; Gil MM; Luna A; Arias-García MA; Galarraga E; Simon SA; Gutierrez R J Neurosci; 2016 Dec; 36(50):12511-12529. PubMed ID: 27974611 [TBL] [Abstract][Full Text] [Related]
9. Excitatory Projections from the Prefrontal Cortex to Nucleus Accumbens Core D1-MSNs and κ Opioid Receptor Modulate Itch-Related Scratching Behaviors. Wu XB; Zhu Q; Gao MH; Yan SX; Gu PY; Zhang PF; Xu ML; Gao YJ J Neurosci; 2023 Feb; 43(8):1334-1347. PubMed ID: 36653189 [TBL] [Abstract][Full Text] [Related]
10. Functional connectivity of the main intercalated nucleus of the mouse amygdala. Mańko M; Geracitano R; Capogna M J Physiol; 2011 Apr; 589(Pt 8):1911-25. PubMed ID: 21224220 [TBL] [Abstract][Full Text] [Related]
11. Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Servonnet A; Rompré PP; Samaha AN Behav Brain Res; 2023 Feb; 440():114254. PubMed ID: 36516942 [TBL] [Abstract][Full Text] [Related]
12. The excitatory transmission from basolateral nuclues of amygdala to nucleus accumbens shell regulates propofol self-administration through AMPA receptors. Dong Z; Xiang S; Pan C; Jiang C; Bao S; Shangguan W; Zeng R; Li J; Lian Q; Wu B Addict Biol; 2023 Aug; 28(8):e13310. PubMed ID: 37500486 [TBL] [Abstract][Full Text] [Related]
14. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. Lintas A; Chi N; Lauzon NM; Bishop SF; Gholizadeh S; Sun N; Tan H; Laviolette SR J Neurosci; 2011 Aug; 31(31):11172-83. PubMed ID: 21813678 [TBL] [Abstract][Full Text] [Related]
15. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. Floresco SB; Blaha CD; Yang CR; Phillips AG J Neurosci; 2001 Apr; 21(8):2851-60. PubMed ID: 11306637 [TBL] [Abstract][Full Text] [Related]
16. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Pistis M; Muntoni AL; Pillolla G; Gessa GL Eur J Neurosci; 2002 Jun; 15(11):1795-802. PubMed ID: 12081659 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. Gill KM; Grace AA Int J Neuropsychopharmacol; 2011 Nov; 14(10):1301-14. PubMed ID: 21211108 [TBL] [Abstract][Full Text] [Related]
18. Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making. Bercovici DA; Princz-Lebel O; Tse MT; Moorman DE; Floresco SB eNeuro; 2018; 5(6):. PubMed ID: 30627636 [TBL] [Abstract][Full Text] [Related]