These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Imprinting localized plasmons for enhanced solar cells. Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells. Lee S; In S; Mason DR; Park N Opt Express; 2013 Feb; 21(4):4055-60. PubMed ID: 23481940 [TBL] [Abstract][Full Text] [Related]
4. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly. Li XV; Cole RM; Milhano CA; Bartlett PN; Soares BF; Baumberg JJ; de Groot CH Nanotechnology; 2009 Jul; 20(28):285309. PubMed ID: 19546497 [TBL] [Abstract][Full Text] [Related]
5. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Henson J; Dimakis E; DiMaria J; Li R; Minissale S; Dal Negro L; Moustakas TD; Paiella R Opt Express; 2010 Sep; 18(20):21322-9. PubMed ID: 20941028 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Henson J; DiMaria J; Dimakis E; Moustakas TD; Paiella R Opt Lett; 2012 Jan; 37(1):79-81. PubMed ID: 22212797 [TBL] [Abstract][Full Text] [Related]
7. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells. Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379 [TBL] [Abstract][Full Text] [Related]
8. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. Zhu LH; Shao MR; Peng RW; Fan RH; Huang XR; Wang M Opt Express; 2013 May; 21 Suppl 3():A313-23. PubMed ID: 24104419 [TBL] [Abstract][Full Text] [Related]
9. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells. Chen SC; Chen YJ; Chen WT; Yen YT; Kao TS; Chuang TY; Liao YK; Wu KH; Yabushita A; Hsieh TP; Charlton MD; Tsai DP; Kuo HC; Chueh YL ACS Nano; 2014 Sep; 8(9):9341-8. PubMed ID: 25093682 [TBL] [Abstract][Full Text] [Related]
10. Incident angle dependence of absorption enhancement in plasmonic solar cells. Yang M; Fu Z; Lin F; Zhu X Opt Express; 2011 Jul; 19 Suppl 4():A763-71. PubMed ID: 21747545 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. Wu JL; Chen FC; Hsiao YS; Chien FC; Chen P; Kuo CH; Huang MH; Hsu CS ACS Nano; 2011 Feb; 5(2):959-67. PubMed ID: 21229960 [TBL] [Abstract][Full Text] [Related]
12. Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Teperik TV; Popov VV; García de Abajo FJ; Abdelsalam M; Bartlett PN; Kelf TA; Sugawara Y; Baumberg JJ Opt Express; 2006 Mar; 14(5):1965-72. PubMed ID: 19503527 [TBL] [Abstract][Full Text] [Related]
13. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476 [TBL] [Abstract][Full Text] [Related]
14. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Bai W; Gan Q; Song G; Chen L; Kafafi Z; Bartoli F Opt Express; 2010 Nov; 18 Suppl 4():A620-30. PubMed ID: 21165095 [TBL] [Abstract][Full Text] [Related]
15. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. Chen MC; Yang YL; Chen SW; Li JH; Aklilu M; Tai Y ACS Appl Mater Interfaces; 2013 Feb; 5(3):511-7. PubMed ID: 23286370 [TBL] [Abstract][Full Text] [Related]
16. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293 [TBL] [Abstract][Full Text] [Related]
17. Optical design of organic solar cell with hybrid plasmonic system. Sha WE; Choy WC; Chen YP; Chew WC Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954 [TBL] [Abstract][Full Text] [Related]
18. Light trapping limits in plasmonic solar cells: an analytical investigation. Sheng X; Hu J; Michel J; Kimerling LC Opt Express; 2012 Jul; 20 Suppl 4():A496-501. PubMed ID: 22828618 [TBL] [Abstract][Full Text] [Related]
19. Highly absorbing solar cells--a survey of plasmonic nanostructures. Dunbar RB; Pfadler T; Schmidt-Mende L Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666 [TBL] [Abstract][Full Text] [Related]