These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21716410)

  • 41. Continuously tunable silicon optical true-time delay lines with a large delay tuning range and a low delay fluctuation.
    Liu Y; Lu L; Ni Z; Chen J; Zhou L; Poon AW
    Opt Express; 2024 Feb; 32(5):7848-7864. PubMed ID: 38439455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing.
    Song Y; Li S; Zheng X; Zhang H; Zhou B
    Opt Lett; 2013 Sep; 38(17):3245-8. PubMed ID: 23988925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrically tunable photonic true-time-delay line.
    Barmenkov YO; Cruz JL; Díez A; Andrés MV
    Opt Express; 2010 Aug; 18(17):17859-64. PubMed ID: 20721172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable microwave filter that uses a high-birefringent fiber and a differential-group-delay element.
    Ning GX; Aditya S; Shum P; Liu N; Gong YD; Lu C
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):913-6. PubMed ID: 15898551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.
    Chew X; Zhou G; Yu H; Chau FS; Deng J; Loke YC; Tang X
    Opt Express; 2010 Oct; 18(21):22232-44. PubMed ID: 20941125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line.
    Zhang B; Zhang L; Yan LS; Fazal I; Yang JY; Willner AE
    Opt Express; 2007 Jun; 15(13):8317-22. PubMed ID: 19547161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Slow-light, band-edge waveguides for tunable time delays.
    Povinelli M; Johnson S; Joannopoulos J
    Opt Express; 2005 Sep; 13(18):7145-59. PubMed ID: 19498738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High quality factor etchless silicon photonic ring resonators.
    Luo LW; Wiederhecker GS; Cardenas J; Poitras C; Lipson M
    Opt Express; 2011 Mar; 19(7):6284-9. PubMed ID: 21451653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser.
    Wang X; Zhu T; Chen L; Bao X
    Opt Express; 2011 May; 19(10):9617-25. PubMed ID: 21643220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermally tunable silicon racetrack resonators with ultralow tuning power.
    Dong P; Qian W; Liang H; Shafiiha R; Feng D; Li G; Cunningham JE; Krishnamoorthy AV; Asghari M
    Opt Express; 2010 Sep; 18(19):20298-304. PubMed ID: 20940921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuously tunable optical buffer with a dual silicon waveguide design.
    Horak P; Stewart W; Loh WH
    Opt Express; 2011 Jun; 19(13):12456-61. PubMed ID: 21716484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators.
    Dong P; Qian W; Liang H; Shafiiha R; Feng NN; Feng D; Zheng X; Krishnamoorthy AV; Asghari M
    Opt Express; 2010 May; 18(10):9852-8. PubMed ID: 20588834
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.
    Chan SC; Liu Q; Wang Z; Chiang KS
    Opt Express; 2011 Jun; 19(13):12045-52. PubMed ID: 21716440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning.
    Li G; Zheng X; Yao J; Thacker H; Shubin I; Luo Y; Raj K; Cunningham JE; Krishnamoorthy AV
    Opt Express; 2011 Oct; 19(21):20435-43. PubMed ID: 21997052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Post-process wavelength tuning of silicon photonic crystal slow-light waveguides.
    Awan KM; Schulz SA; Liu DX; Dolgaleva K; Upham J; Boyd RW
    Opt Lett; 2015 May; 40(9):1952-5. PubMed ID: 25927756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrated remotely tunable optical delay line for millimeter-wave beam steering fabricated in an InP generic foundry.
    Cao Z; Tessema N; Latkowski S; Zhao X; Chen Z; Moskalenko V; Williams KA; van der Boom HP; Tangdiongga E; Koonen AM
    Opt Lett; 2015 Sep; 40(17):3930-3. PubMed ID: 26368678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable integrated variable bit-rate DPSK silicon receiver.
    Xu K; Cheng Z; Wong CY; Tsang HK
    Opt Lett; 2012 Nov; 37(22):4738-40. PubMed ID: 23164897
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Slow-light-based variable symbol-rate silicon photonics DQPSK receiver.
    Suzuki K; Nguyen HC; Tamanuki T; Shinobu F; Saito Y; Sakai Y; Baba T
    Opt Express; 2012 Feb; 20(4):4796-804. PubMed ID: 22418237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simple and compact optical half-subtractor based on photonic crystal resonant cavities in silicon rods.
    Namdari N; Talebzadeh R
    Appl Opt; 2020 Jan; 59(1):165-170. PubMed ID: 32225284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.