These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 21716412)

  • 1. Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers.
    David A; Horowitz M
    Opt Express; 2011 Jun; 19(12):11792-803. PubMed ID: 21716412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise.
    Fleyer M; Heerschap S; Cranch GA; Horowitz M
    Opt Lett; 2016 Mar; 41(6):1265-8. PubMed ID: 26977685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise.
    Saleh K; Merrer PH; Llopis O; Cibiel G
    Opt Lett; 2012 Feb; 37(4):518-20. PubMed ID: 22344092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superlinear growth of Rayleigh scattering-induced intensity noise in single-mode fibers.
    Cahill JP; Okusaga O; Zhou W; Menyuk CR; Carter GM
    Opt Express; 2015 Mar; 23(5):6400-7. PubMed ID: 25836860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering.
    Shi M; Yi L; Wei W; Hu W
    Opt Express; 2018 Jun; 26(13):16113-16124. PubMed ID: 30119448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Noise Induced by Stimulated Brillouin Scattering in Distributed Sensing.
    Kadum JE; Feng C; Schneider T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral broadening of continuous-wave monochromatic pump radiation caused by stimulated Brillouin scattering in optical fiber.
    Kovalev VI; Harrison RG
    Opt Lett; 2004 Feb; 29(4):379-81. PubMed ID: 14971759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis.
    Jeong JH; Lee K; Song KY; Jeong JM; Lee SB
    Opt Express; 2011 Sep; 19(19):18721-8. PubMed ID: 21935242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-noise Brillouin laser on a chip at 1064 nm.
    Li J; Lee H; Vahala KJ
    Opt Lett; 2014 Jan; 39(2):287-90. PubMed ID: 24562128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique.
    Mizuno Y; Kishi M; Hotate K; Ishigure T; Nakamura K
    Opt Lett; 2011 Jun; 36(12):2378-80. PubMed ID: 21686026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on stimulated Rayleigh scattering in optical fibers.
    Zhu T; Bao X; Chen L; Liang H; Dong Y
    Opt Express; 2010 Oct; 18(22):22958-63. PubMed ID: 21164634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser.
    Yang C; Guan X; Zhao Q; Wu B; Feng Z; Gan J; Cheng H; Peng M; Yang Z; Xu S
    Opt Express; 2017 Jun; 25(12):13324-13331. PubMed ID: 28788868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering.
    Smith RG
    Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter.
    Shee YG; Mahdi MA; Al-Mansoori MH; Yaakob S; Mohamed R; Zamzuri AK; Man A; Ismail A; Hitam S
    Opt Lett; 2010 May; 35(9):1461-3. PubMed ID: 20436603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers.
    Setra RG; Arroyo-Almanza DA; Ni Z; Murphy TE; Roy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022903. PubMed ID: 26382472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.
    Chin S; Thévenaz L; Sancho J; Sales S; Capmany J; Berger P; Bourderionnet J; Dolfi D
    Opt Express; 2010 Oct; 18(21):22599-613. PubMed ID: 20941157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers.
    Al-Asadi HA; Al-Mansoori MH; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2011 Jan; 19(3):1842-53. PubMed ID: 21368999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking.
    Souidi Y; Taleb F; Zheng J; Lee MW; Du Burck F; Roncin V
    Appl Opt; 2016 Jan; 55(2):248-53. PubMed ID: 26835759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection.
    Preussler S; Schneider T
    Opt Express; 2015 Oct; 23(20):26879-87. PubMed ID: 26480198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.