These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21716425)

  • 1. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million.
    Taguchi Y; Takahashi Y; Sato Y; Asano T; Noda S
    Opt Express; 2011 Jun; 19(12):11916-21. PubMed ID: 21716425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies.
    Ashida K; Okano M; Ohtsuka M; Seki M; Yokoyama N; Koshino K; Mori M; Asano T; Noda S; Takahashi Y
    Opt Express; 2017 Jul; 25(15):18165-18174. PubMed ID: 28789305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration.
    Takahashi Y; Tanaka Y; Hagino H; Sugiya T; Sato Y; Asano T; Noda S
    Opt Express; 2009 Sep; 17(20):18093-102. PubMed ID: 19907599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands.
    Terawaki R; Takahashi Y; Chihara M; Inui Y; Noda S
    Opt Express; 2012 Sep; 20(20):22743-52. PubMed ID: 23037425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic crystal nanocavity with a Q factor exceeding eleven million.
    Asano T; Ochi Y; Takahashi Y; Kishimoto K; Noda S
    Opt Express; 2017 Feb; 25(3):1769-1777. PubMed ID: 29519030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetrically glass-clad photonic crystal nanocavities with ultrahigh quality factors.
    Song BS; Jeon SW; Noda S
    Opt Lett; 2011 Jan; 36(1):91-3. PubMed ID: 21209697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings.
    Kuramochi E; Taniyama H; Tanabe T; Kawasaki K; Roh YG; Notomi M
    Opt Express; 2010 Jul; 18(15):15859-69. PubMed ID: 20720968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal nanocavity with a Q-factor of ~9 million.
    Sekoguchi H; Takahashi Y; Asano T; Noda S
    Opt Express; 2014 Jan; 22(1):916-24. PubMed ID: 24515051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence of self-assembled InAs quantum dots embedded in photonic crystal nanocavities with shifted air holes.
    Chen WY; Chang HS; Lin CH; Chiu PC; Wang CJ; Tseng YC; Chyi JI; Hsu TM
    Nanotechnology; 2010 Feb; 21(5):055201. PubMed ID: 20023316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities.
    Yamada S; Song BS; Asano T; Noda S
    Opt Lett; 2011 Oct; 36(20):3981-3. PubMed ID: 22002359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities.
    Zhang Y; McCutcheon MW; Burgess IB; Loncar M
    Opt Lett; 2009 Sep; 34(17):2694-6. PubMed ID: 19724535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid photonic-plasmonic crystal nanocavities.
    Yang X; Ishikawa A; Yin X; Zhang X
    ACS Nano; 2011 Apr; 5(4):2831-8. PubMed ID: 21384850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities.
    Asano T; Song BS; Noda S
    Opt Express; 2006 Mar; 14(5):1996-2002. PubMed ID: 19503530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved design and experimental demonstration of ultrahigh-Q C
    Takata K; Kuramochi E; Shinya A; Notomi M
    Opt Express; 2023 Mar; 31(7):11864-11884. PubMed ID: 37155812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of photonic crystal nanocavities based on deep learning.
    Asano T; Noda S
    Opt Express; 2018 Dec; 26(25):32704-32717. PubMed ID: 30645432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000).
    Gai X; Luther-Davies B; White TP
    Opt Express; 2012 Jul; 20(14):15503-15. PubMed ID: 22772245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Q-factors of III-nitride-based photonic crystal nanocavities by optical loss engineering.
    Iwaya T; Ichikawa S; Timmerman D; Tatebayashi J; Fujiwara Y
    Opt Express; 2022 Aug; 30(16):28853-28864. PubMed ID: 36299073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant modes of single silicon nanocavities excited by electron irradiation.
    Coenen T; van de Groep J; Polman A
    ACS Nano; 2013 Feb; 7(2):1689-98. PubMed ID: 23311326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.