BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 21716470)

  • 1. Modifying photoisomerization efficiency by metallic nanostructures.
    Xu S; Shan J; Shi W; Liu L; Xu L
    Opt Express; 2011 Jun; 19(13):12336-41. PubMed ID: 21716470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-based nanolenses assembled on a well-defined DNA template.
    Bidault S; Abajo FJ; Polman A
    J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand.
    Ahonen P; Schiffrin DJ; Paprotny J; Kontturi K
    Phys Chem Chem Phys; 2007 Feb; 9(5):651-8. PubMed ID: 17242747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures.
    Hsueh CH; Lin CH; Li JH; Hatab NA; Gu B
    Opt Express; 2011 Sep; 19(20):19660-7. PubMed ID: 21996907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches.
    Weeber JC; Hassan K; Saviot L; Dereux A; Boissière C; Durupthy O; Chaneac C; Burov E; Pastouret A
    Opt Express; 2012 Dec; 20(25):27636-49. PubMed ID: 23262712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors.
    Beliatis MJ; Henley SJ; Silva SR
    Opt Lett; 2011 Apr; 36(8):1362-4. PubMed ID: 21499357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoisomerisation and ligand-controlled reversible aggregation of azobenzene-functionalised gold nanoparticles.
    Köhntopp A; Dabrowski A; Malicki M; Temps F
    Chem Commun (Camb); 2014 Sep; 50(70):10105-7. PubMed ID: 25051354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules.
    Chen WT; Chen CJ; Wu PC; Sun S; Zhou L; Guo GY; Hsiao CT; Yang KY; Zheludev NI; Tsai DP
    Opt Express; 2011 Jun; 19(13):12837-42. PubMed ID: 21716526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer.
    Yang JS; Sung JH; O BH
    Opt Express; 2010 Jun; 18(13):13418-24. PubMed ID: 20588472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.