These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2171658)

  • 1. Retinylidene Schiff bases in alkylammonium carboxylate reversed micelles.
    Singh AK; Sandorfy C; Fendler JH
    Biochim Biophys Acta; 1990 Oct; 1036(1):34-40. PubMed ID: 2171658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M; DeDecker BS; Smith SO
    Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
    Yi A; Mamaeva N; Li H; Spudich JL; Rothschild KJ
    Biochemistry; 2016 Apr; 55(16):2371-80. PubMed ID: 27039989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R; Heck M; Sommer ME
    Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line.
    Eilers M; Reeves PJ; Ying W; Khorana HG; Smith SO
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):487-92. PubMed ID: 9892660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal Schiff base chromophore in the surfactant solubilised water pools in CCl4.
    Singh AK; Aruna RV
    Biochim Biophys Acta; 1995 Oct; 1245(2):167-72. PubMed ID: 7492573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of schiff-base retinal chromophores in vacuo.
    Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA
    J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin.
    Wijesiri K; Gascón JA
    J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.
    Morrow JM; Chang BS
    Biochemistry; 2015 Jul; 54(29):4507-18. PubMed ID: 26098991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclodextrin retinylidene: a biomimetic kinetic trap model for rhodopsin.
    Kpegba K; Murtha M; Nesnas N
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1523-6. PubMed ID: 16384706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin.
    Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I
    Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative Formation of Red-Shifted Channelrhodopsins: Noncovalent Incorporation with Retinal-Based Enamine-Type Schiff Bases and Mutated Channelopsin.
    Okitsu T; Matsuyama T; Yamashita T; Ishizuka T; Yawo H; Imamoto Y; Shichida Y; Wada A
    Chem Pharm Bull (Tokyo); 2017; 65(4):356-358. PubMed ID: 28381675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base and a counterion switch during photoactivation.
    Kusnetzow AK; Dukkipati A; Babu KR; Ramos L; Knox BE; Birge RR
    Proc Natl Acad Sci U S A; 2004 Jan; 101(4):941-6. PubMed ID: 14732701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.