These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2171679)

  • 1. Identification of two cAMP-dependent phosphorylation sites on erythrocyte protein 4.1.
    Horne WC; Prinz WC; Tang EK
    Biochim Biophys Acta; 1990 Oct; 1055(1):87-92. PubMed ID: 2171679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases.
    Horne WC; Leto TL; Marchesi VT
    J Biol Chem; 1985 Aug; 260(16):9073-6. PubMed ID: 2991234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro phosphorylation of the red blood cell cytoskeleton complex by cyclic AMP-dependent protein kinase from erythrocyte membrane.
    Boivin P; Garbarz M; Dhermy D; Galand C
    Biochim Biophys Acta; 1981 Sep; 647(1):1-6. PubMed ID: 6271204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the spectrin-actin binding site of erythrocyte protein 4.1.
    Correas I; Speicher DW; Marchesi VT
    J Biol Chem; 1986 Oct; 261(28):13362-6. PubMed ID: 3531202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations.
    Correas I; Leto TL; Speicher DW; Marchesi VT
    J Biol Chem; 1986 Mar; 261(7):3310-5. PubMed ID: 3949771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the phosphorylation site on human erythrocyte band 7 integral membrane protein: implications for a monotopic protein structure.
    Salzer U; Ahorn H; Prohaska R
    Biochim Biophys Acta; 1993 Sep; 1151(2):149-52. PubMed ID: 8373790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation reduces the affinity of protein 4.1 for spectrin.
    Eder PS; Soong CJ; Tao M
    Biochemistry; 1986 Apr; 25(7):1764-70. PubMed ID: 3707908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 2,3-diphosphoglycerate on the phosphorylation of protein 4.1 by protein kinase C.
    Chao TS; Tao M
    Arch Biochem Biophys; 1991 Mar; 285(2):221-6. PubMed ID: 1654767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a calcium-dependent calmodulin-binding domain in the 135-kD human protein 4.1 isoform.
    Leclerc E; Vetter S
    Eur J Biochem; 1998 Dec; 258(2):567-71. PubMed ID: 9874224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9.
    Faquin WC; Chahwala SB; Cantley LC; Branton D
    Biochim Biophys Acta; 1986 Jul; 887(2):142-9. PubMed ID: 3013320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain.
    Walaas SI; Czernik AJ; Olstad OK; Sletten K; Walaas O
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):635-40. PubMed ID: 7999001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue- and development-specific alternative RNA splicing regulates expression of multiple isoforms of erythroid membrane protein 4.1.
    Conboy JG; Chan JY; Chasis JA; Kan YW; Mohandas N
    J Biol Chem; 1991 May; 266(13):8273-80. PubMed ID: 2022644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of the C-terminal domain of 4.1 proteins.
    Scott C; Phillips GW; Baines AJ
    Eur J Biochem; 2001 Jul; 268(13):3709-17. PubMed ID: 11432737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte protein 4.1 binds and regulates myosin.
    Pasternack GR; Racusen RH
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9712-6. PubMed ID: 2532361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of protein 4.1 binding to inside-out membrane vesicles by phosphorylation.
    Chao TS; Tao M
    Biochemistry; 1991 Oct; 30(43):10529-35. PubMed ID: 1931975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the phosphorylation site in vitro for cAMP-dependent protein kinase on the rat adipocyte cGMP-inhibited cAMP phosphodiesterase.
    Rascón A; Degerman E; Taira M; Meacci E; Smith CJ; Manganiello V; Belfrage P; Tornqvist H
    J Biol Chem; 1994 Apr; 269(16):11962-6. PubMed ID: 8163498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites.
    Murakami N; Chauhan VP; Elzinga M
    Biochemistry; 1998 Feb; 37(7):1989-2003. PubMed ID: 9485326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of a spectrin-binding domain of human erythrocyte membrane protein 4.2.
    Mandal D; Moitra PK; Basu J
    Biochem J; 2002 Jun; 364(Pt 3):841-7. PubMed ID: 12049649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the phosphorylation sites of human erythrocyte spectrin.
    Harris HW; Lux SE
    J Biol Chem; 1980 Dec; 255(23):11512-20. PubMed ID: 7440554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation in membranes of intact human erythrocytes.
    Shapiro DL; Marchesi VT
    J Biol Chem; 1977 Jan; 252(2):508-17. PubMed ID: 188816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.