These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 21717010)

  • 1. Stochastic analysis of a miRNA-protein toggle switch.
    Giampieri E; Remondini D; de Oliveira L; Castellani G; Lió P
    Mol Biosyst; 2011 Oct; 7(10):2796-803. PubMed ID: 21717010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-independent differences between the mean of discrete stochastic systems and the corresponding continuous deterministic systems.
    Gadgil CJ
    Bull Math Biol; 2009 Oct; 71(7):1599-611. PubMed ID: 19322613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.
    Manninen T; Linne ML; Ruohonen K
    Comput Biol Chem; 2006 Aug; 30(4):280-91. PubMed ID: 16880117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic modelling of the eukaryotic heat shock response.
    Mizera A; Gambin B
    J Theor Biol; 2010 Aug; 265(3):455-66. PubMed ID: 20438739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.
    Vellela M; Qian H
    Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch.
    Morelli MJ; Allen RJ; Tănase-Nicola S; ten Wolde PR
    J Chem Phys; 2008 Jan; 128(4):045105. PubMed ID: 18248012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of approaches for parameter estimation on stochastic models: Generic least squares versus specialized approaches.
    Zimmer C; Sahle S
    Comput Biol Chem; 2016 Apr; 61():75-85. PubMed ID: 26826353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models.
    Zhu R; Ribeiro AS; Salahub D; Kauffman SA
    J Theor Biol; 2007 Jun; 246(4):725-45. PubMed ID: 17350653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic simulations on a model of circadian rhythm generation.
    Miura S; Shimokawa T; Nomura T
    Biosystems; 2008; 93(1-2):133-40. PubMed ID: 18585851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothetical biomolecular probe based on a genetic switch with tunable symmetry and stability.
    Martyushenko N; Johansen SH; Ghim CM; Almaas E
    BMC Syst Biol; 2016 Jun; 10(1):39. PubMed ID: 27266276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic models for regulatory networks of the genetic toggle switch.
    Tian T; Burrage K
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8372-7. PubMed ID: 16714385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding stochastic simulations of the smallest genetic networks.
    Schultz D; Onuchic JN; Wolynes PG
    J Chem Phys; 2007 Jun; 126(24):245102. PubMed ID: 17614590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
    Erban R; Kevrekidis IG; Adalsteinsson D; Elston TC
    J Chem Phys; 2006 Feb; 124(8):084106. PubMed ID: 16512707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression.
    Bokes P; King JR; Wood AT; Loose M
    Bull Math Biol; 2013 Feb; 75(2):351-71. PubMed ID: 23354929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient analysis of stochastic switches and trajectories with applications to gene regulatory networks.
    Munsky B; Khammash M
    IET Syst Biol; 2008 Sep; 2(5):323-33. PubMed ID: 19045827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling stochasticity in gene regulation: characterization in the terms of the underlying distribution function.
    Paszek P
    Bull Math Biol; 2007 Jul; 69(5):1567-601. PubMed ID: 17361363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.