These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21717122)

  • 1. Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response.
    Gobbo M; Gaffurini P; Bissolotti L; Esposito F; Orizio C
    Eur J Appl Physiol; 2011 Oct; 111(10):2451-9. PubMed ID: 21717122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extra-torque of human tibialis anterior during electrical stimulation with linearly varying frequency and amplitude trains.
    Orizio C; Celichowski J; Toscani F; Calabretto C; Bissolotti L; Gobbo M
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1375-83. PubMed ID: 24012223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning.
    Botter A; Oprandi G; Lanfranco F; Allasia S; Maffiuletti NA; Minetto MA
    Eur J Appl Physiol; 2011 Oct; 111(10):2461-71. PubMed ID: 21796408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel perspective on contractile properties and intensity-dependent verification of force-frequency relationship during neuromuscular electrical stimulation.
    Tomita A; Kawade S; Moritani T; Watanabe K
    Physiol Rep; 2020 Nov; 8(22):e14598. PubMed ID: 33230975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training.
    Vitry F; Martin A; Papaiordanidou M
    J Appl Physiol (1985); 2019 Nov; 127(5):1469-1477. PubMed ID: 31545155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
    Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919
    [No Abstract]   [Full Text] [Related]  

  • 7. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources.
    Sayenko DG; Nguyen R; Popovic MR; Masani K
    Eur J Appl Physiol; 2014 Apr; 114(4):793-804. PubMed ID: 24390690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation artifact in surface EMG signal: effect of the stimulation waveform, detection system, and current amplitude using hybrid stimulation technique.
    Mandrile F; Farina D; Pozzo M; Merletti R
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):407-15. PubMed ID: 14960117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central Contribution to Electrically Induced Fatigue depends on Stimulation Frequency.
    Grosprêtre S; Gueugneau N; Martin A; Lepers R
    Med Sci Sports Exerc; 2017 Aug; 49(8):1530-1540. PubMed ID: 28291023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental muscle pain decreases voluntary EMG activity but does not affect the muscle potential evoked by transcutaneous electrical stimulation.
    Farina D; Arendt-Nielsen L; Graven-Nielsen T
    Clin Neurophysiol; 2005 Jul; 116(7):1558-65. PubMed ID: 15907396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.
    Rozand V; Grosprêtre S; Stapley PJ; Lepers R
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency.
    Zheng Y; Hu X
    J Neural Eng; 2018 Aug; 15(4):046001. PubMed ID: 29569574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of torque evoked by wide-pulse, high-frequency neuromuscular electrical stimulation and the potential implications for rehabilitation and training.
    Donnelly C; Stegmüller J; Blazevich AJ; Crettaz von Roten F; Kayser B; Neyroud D; Place N
    Sci Rep; 2021 Mar; 11(1):6399. PubMed ID: 33737664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationships among peak torque, mean power output, mechanomyography, and electromyography in men and women during maximal, eccentric isokinetic muscle actions.
    Cramer JT; Housh TJ; Evetovich TK; Johnson GO; Ebersole KT; Perry SR; Bull AJ
    Eur J Appl Physiol; 2002 Jan; 86(3):226-32. PubMed ID: 11990731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles.
    Gobbo M; Cè E; Diemont B; Esposito F; Orizio C
    Eur J Appl Physiol; 2006 May; 97(1):9-15. PubMed ID: 16477444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane capacitance and characteristic frequency are associated with contractile properties of skeletal muscle.
    Yamada Y; Hirata K; Iida N; Kanda A; Shoji M; Yoshida T; Myachi M; Akagi R
    Med Eng Phys; 2022 Aug; 106():103832. PubMed ID: 35926956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans.
    Klakowicz PM; Baldwin ER; Collins DF
    J Neurophysiol; 2006 Sep; 96(3):1293-302. PubMed ID: 16611843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue and Discomfort During Spatially Distributed Sequential Stimulation of Tibialis Anterior.
    Wiest MJ; Bergquist AJ; Heffernan MG; Popovic M; Masani K
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1566-1573. PubMed ID: 31265401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed fatigue in finger flexion forces through transcutaneous nerve stimulation.
    Shin H; Chen R; Hu X
    J Neural Eng; 2018 Dec; 15(6):066005. PubMed ID: 30150485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.