These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 21717172)
1. Adsorption of adenine, cytosine, thymine, and uracil on sulfide-modified montmorillonite: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. Carneiro CE; Berndt G; de Souza Junior IG; de Souza CM; Paesano A; da Costa AC; di Mauro E; de Santana H; Zaia CT; Zaia DA Orig Life Evol Biosph; 2011 Oct; 41(5):453-68. PubMed ID: 21717172 [TBL] [Abstract][Full Text] [Related]
2. Cysteine, thiourea and thiocyanate interactions with clays: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. de Santana H; Paesano A; da Costa AC; di Mauro E; de Souza IG; Ivashita FF; de Souza CM; Zaia CT; Zaia DA Amino Acids; 2010 Apr; 38(4):1089-99. PubMed ID: 19579002 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. Baú JP; Carneiro CE; de Souza Junior IG; de Souza CM; da Costa AC; di Mauro E; Zaia CT; Coronas J; Casado C; de Santana H; Zaia DA Orig Life Evol Biosph; 2012 Feb; 42(1):19-29. PubMed ID: 22011879 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry. Canhisares-Filho JE; Carneiro CE; de Santana H; Urbano A; da Costa AC; Zaia CT; Zaia DA Astrobiology; 2015 Sep; 15(9):728-38. PubMed ID: 26393397 [TBL] [Abstract][Full Text] [Related]
5. Amino acid interaction with and adsorption on clays: FT-IR and Mössbauer spectroscopy and X-ray diffractometry investigations. Benetoli LO; de Souza CM; da Silva KL; de Souza IG; de Santana H; Paesano A; da Costa AC; Zaia CT; Zaia DA Orig Life Evol Biosph; 2007 Dec; 37(6):479-93. PubMed ID: 17578677 [TBL] [Abstract][Full Text] [Related]
6. Adenine Adsorbed onto Montmorillonite Exposed to Ionizing Radiation: Essays on Prebiotic Chemistry. Baú JPT; Villafañe-Barajas SA; da Costa ACS; Negrón-Mendoza A; Colín-Garcia M; Zaia DAM Astrobiology; 2020 Jan; 20(1):26-38. PubMed ID: 31549853 [TBL] [Abstract][Full Text] [Related]
7. Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite. Perezgasga L; Serrato-Díaz A; Negrón-Mendoza A; De Pablo Galán L; Mosqueira FG Orig Life Evol Biosph; 2005 Apr; 35(2):91-110. PubMed ID: 16010992 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mössbauer, EPR spectroscopy and X-ray diffractometry studies. Vieira AP; Berndt G; de Souza Junior IG; Di Mauro E; Paesano A; de Santana H; da Costa AC; Zaia CT; Zaia DA Amino Acids; 2011 Jan; 40(1):205-14. PubMed ID: 20524137 [TBL] [Abstract][Full Text] [Related]
9. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations. Wu R; McMahon TB J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of permanganate oxidation reactions of nucleotide bases by spectroscopy. Bui CT; Cotton RG Bioorg Chem; 2002 Apr; 30(2):133-7. PubMed ID: 12020137 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on the experimental and calculated results of mid-infrared and Raman vibrational modes of nucleic acid bases. Wang F; Zhao D; Jiang L; Xu L; Sun H; Liu Y J Mol Graph Model; 2017 Jun; 74():305-314. PubMed ID: 28475967 [TBL] [Abstract][Full Text] [Related]
12. The adsorption of nucleotides and polynucleotides on montmorillonite clay. Ferris JP; Ertem G; Agarwal VK Orig Life Evol Biosph; 1989; 19(2):153-64. PubMed ID: 11536623 [TBL] [Abstract][Full Text] [Related]
13. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Sowerby SJ; Cohn CA; Heckl WM; Holm NG Proc Natl Acad Sci U S A; 2001 Jan; 98(3):820-2. PubMed ID: 11158553 [TBL] [Abstract][Full Text] [Related]
14. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite. Anizelli PR; Baú JP; Gomes FP; da Costa AC; Carneiro CE; Zaia CT; Zaia DA Orig Life Evol Biosph; 2015 Sep; 45(3):289-306. PubMed ID: 25754589 [TBL] [Abstract][Full Text] [Related]
15. Interactions of hydrophobic fractions of dissolved organic matter with Fe(3+) - and Cu(2+)-montmorillonite. Polubesova T; Chen Y; Navon R; Chefetz B Environ Sci Technol; 2008 Jul; 42(13):4797-803. PubMed ID: 18678008 [TBL] [Abstract][Full Text] [Related]
16. Clay-nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Franchi M; Bramanti E; Bonzi LM; Orioli PL; Vettori C; Gallori E Orig Life Evol Biosph; 1999 May; 29(3):297-315. PubMed ID: 10465718 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of hydrogen gas and redox processes in clays. Didier M; Leone L; Greneche JM; Giffaut E; Charlet L Environ Sci Technol; 2012 Mar; 46(6):3574-9. PubMed ID: 22352351 [TBL] [Abstract][Full Text] [Related]
18. Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Nachtigallová D; Hobza P; Ritze HH Phys Chem Chem Phys; 2008 Oct; 10(37):5689-97. PubMed ID: 18956103 [TBL] [Abstract][Full Text] [Related]
19. Thin-film properties of DNA and RNA bases: a combined experimental and theoretical study. Haug A; Schweizer S; Latteyer F; Casu MB; Peisert H; Ochsenfeld C; Chassé T Chemphyschem; 2008 Apr; 9(5):740-7. PubMed ID: 18383237 [TBL] [Abstract][Full Text] [Related]
20. Calculations of pKa's and redox potentials of nucleobases with explicit waters and polarizable continuum solvation. Thapa B; Schlegel HB J Phys Chem A; 2015 May; 119(21):5134-44. PubMed ID: 25291241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]