These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21717336)

  • 1. Complementation system for Helicobacter pylori.
    Kim J; Kim SW; Jang S; Merrell DS; Cha JH
    J Microbiol; 2011 Jun; 49(3):481-6. PubMed ID: 21717336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo complementation of the Helicobacter pylori arginase mutant using an intergenic chromosomal site.
    Langford ML; Zabaleta J; Ochoa AC; Testerman TL; McGee DJ
    Helicobacter; 2006 Oct; 11(5):477-93. PubMed ID: 16961811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approaches for genotyping of Helicobacter pylori based on amplification of polymorphisms in intergenic DNA regions and at the insertion site of the cag pathogenicity island.
    Bereswill S; Schönenberger R; Thies C; Stähler F; Strobel S; Pfefferle P; Wille L; Kist M
    Med Microbiol Immunol; 2000 Nov; 189(2):105-13. PubMed ID: 11138636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori.
    Ando T; Israel DA; Kusugami K; Blaser MJ
    J Bacteriol; 1999 Sep; 181(18):5572-80. PubMed ID: 10482496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene fusion in Helicobacter pylori: making the ends meet.
    Sakharkar KR; Sakharkar MK; Chow VT
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):169-80. PubMed ID: 16541196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. comH, a novel gene essential for natural transformation of Helicobacter pylori.
    Smeets LC; Bijlsma JJ; Boomkens SY; Vandenbroucke-Grauls CM; Kusters JG
    J Bacteriol; 2000 Jul; 182(14):3948-54. PubMed ID: 10869072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dprA gene is required for natural transformation of Helicobacter pylori.
    Smeets LC; Bijlsma JJ; Kuipers EJ; Vandenbroucke-Grauls CM; Kusters JG
    FEMS Immunol Med Microbiol; 2000 Feb; 27(2):99-102. PubMed ID: 10640603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation.
    Heuermann D; Haas R
    Mol Gen Genet; 1998 Mar; 257(5):519-28. PubMed ID: 9563837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the homologous recombination in Helicobacter pylori.
    Pyndiah S; Ménard A; Zerbib F; Mégraud F
    Helicobacter; 2005 Jun; 10(3):185-92. PubMed ID: 15904476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single nucleotide change affects fur-dependent regulation of sodB in H. pylori.
    Carpenter BM; Gancz H; Gonzalez-Nieves RP; West AL; Whitmire JM; Michel SL; Merrell DS
    PLoS One; 2009; 4(4):e5369. PubMed ID: 19399190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker.
    Wang Y; Roos KP; Taylor DE
    J Gen Microbiol; 1993 Oct; 139(10):2485-93. PubMed ID: 8254319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic complementation of the urease-negative Helicobacter pylori mutant N6ureB::TnKm.
    Rokita E; Makristathis A
    FEMS Immunol Med Microbiol; 2001 Mar; 30(2):95-102. PubMed ID: 11267840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates.
    Hovey JG; Watson EL; Langford ML; Hildebrandt E; Bathala S; Bolland JR; Spadafora D; Mendz GL; McGee DJ
    BMC Microbiol; 2007 Apr; 7():26. PubMed ID: 17408487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer.
    Ando T; Xu Q; Torres M; Kusugami K; Israel DA; Blaser MJ
    Mol Microbiol; 2000 Sep; 37(5):1052-65. PubMed ID: 10972824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of rdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori.
    Kwon DH; El-Zaatari FA; Kato M; Osato MS; Reddy R; Yamaoka Y; Graham DY
    Antimicrob Agents Chemother; 2000 Aug; 44(8):2133-42. PubMed ID: 10898687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic transformation in Helicobacter pylori.
    Tsuda M; Karita M; Nakazawa T
    Microbiol Immunol; 1993; 37(1):85-9. PubMed ID: 8474363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system.
    Hofreuter D; Odenbreit S; Haas R
    Mol Microbiol; 2001 Jul; 41(2):379-91. PubMed ID: 11489125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of genome sequencing to understanding the biology of Helicobacter pylori.
    Ge Z; Taylor DE
    Annu Rev Microbiol; 1999; 53():353-87. PubMed ID: 10547695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a ComE3 homologue essential for DNA transformation in Helicobacter pylori.
    Yeh YC; Lin TL; Chang KC; Wang JT
    Infect Immun; 2003 Sep; 71(9):5427-31. PubMed ID: 12933898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation.
    Ailloud F; Estibariz I; Pfaffinger G; Suerbaum S
    mBio; 2022 Aug; 13(4):e0181122. PubMed ID: 35876509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.