BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21717353)

  • 1. Claudin-4: functional studies beyond the tight junction.
    Eckelhoefer HA; Rajapaksa TE; Wang J; Hamer M; Appleby NC; Ling J; Lo DD
    Methods Mol Biol; 2011; 762():115-28. PubMed ID: 21717353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folate targeted polymeric 'green' nanotherapy for cancer.
    Narayanan S; Binulal NS; Mony U; Manzoor K; Nair S; Menon D
    Nanotechnology; 2010 Jul; 21(28):285107. PubMed ID: 20585151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular uptake of Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method.
    Xiong S; Zhao X; Heng BC; Ng KW; Loo JS
    Biotechnol J; 2011 May; 6(5):501-8. PubMed ID: 21259442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium.
    Long H; Crean CD; Lee WH; Cummings OW; Gabig TG
    Cancer Res; 2001 Nov; 61(21):7878-81. PubMed ID: 11691807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLGA/polymeric liposome for targeted drug and gene co-delivery.
    Wang H; Zhao P; Su W; Wang S; Liao Z; Niu R; Chang J
    Biomaterials; 2010 Nov; 31(33):8741-8. PubMed ID: 20727587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic and spectroscopic evaluation of novel PLGA-chitosan Nanoplexes as an ocular delivery system.
    Jain GK; Pathan SA; Akhter S; Jayabalan N; Talegaonkar S; Khar RK; Ahmad FJ
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):397-403. PubMed ID: 20940097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4.
    Takahashi A; Kondoh M; Masuyama A; Fujii M; Mizuguchi H; Horiguchi Y; Watanabe Y
    J Control Release; 2005 Nov; 108(1):56-62. PubMed ID: 16091298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro.
    Takahashi A; Kondoh M; Uchida H; Kakamu Y; Hamakubo T; Yagi K
    Biochem Biophys Res Commun; 2011 Jul; 410(3):466-70. PubMed ID: 21672529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics.
    Derakhshandeh K; Erfan M; Dadashzadeh S
    Eur J Pharm Biopharm; 2007 Apr; 66(1):34-41. PubMed ID: 17070678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery.
    Vukomanović M; Skapin SD; Jančar B; Maksin T; Ignjatović N; Uskoković V; Uskoković D
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):404-13. PubMed ID: 20951005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin.
    Lee H; Ahn CH; Park TG
    Macromol Biosci; 2009 Apr; 9(4):336-42. PubMed ID: 19006195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a claudin-targeting molecule using a C-terminal fragment of Clostridium perfringens enterotoxin.
    Ebihara C; Kondoh M; Hasuike N; Harada M; Mizuguchi H; Horiguchi Y; Fujii M; Watanabe Y
    J Pharmacol Exp Ther; 2006 Jan; 316(1):255-60. PubMed ID: 16183701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts.
    Lim HJ; Nam HY; Lee BH; Kim DJ; Ko JY; Park JS
    Biotechnol Prog; 2007; 23(3):693-7. PubMed ID: 17465527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants.
    Robertson SL; Smedley JG; Singh U; Chakrabarti G; Van Itallie CM; Anderson JM; McClane BA
    Cell Microbiol; 2007 Nov; 9(11):2734-55. PubMed ID: 17587331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow Focusing: a versatile technology to produce size-controlled and specific-morphology microparticles.
    Martín-Banderas L; Flores-Mosquera M; Riesco-Chueca P; Rodríguez-Gil A; Cebolla A; Chávez S; Gañán-Calvo AM
    Small; 2005 Jul; 1(7):688-92. PubMed ID: 17193506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives.
    Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM
    J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.
    Singh J; Pandit S; Bramwell VW; Alpar HO
    Methods; 2006 Feb; 38(2):96-105. PubMed ID: 16442811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer nanoneedle-mediated intracellular drug delivery.
    Kolhar P; Doshi N; Mitragotri S
    Small; 2011 Jul; 7(14):2094-100. PubMed ID: 21695782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of poly(DL-lactide-co-glycolide) nanoparticles for siRNA delivery.
    Cun D; Foged C; Yang M; Frøkjaer S; Nielsen HM
    Int J Pharm; 2010 May; 390(1):70-5. PubMed ID: 19836438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.