These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21717542)

  • 1. C-H bond activation of methanol and ethanol by a high-spin Fe(IV)O biomimetic complex.
    Donald WA; McKenzie CJ; O'Hair RA
    Angew Chem Int Ed Engl; 2011 Aug; 50(36):8379-83. PubMed ID: 21717542
    [No Abstract]   [Full Text] [Related]  

  • 2. An aqueous non-heme Fe(IV)oxo complex with a basic group in the second coordination sphere.
    Vad MS; Lennartson A; Nielsen A; Harmer J; McGrady JE; Frandsen C; Mørup S; McKenzie CJ
    Chem Commun (Camb); 2012 Nov; 48(88):10880-2. PubMed ID: 23032252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X; Yang X
    J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-H activation by a mononuclear manganese(III) hydroxide complex: synthesis and characterization of a manganese-lipoxygenase mimic?
    Goldsmith CR; Cole AP; Stack TD
    J Am Chem Soc; 2005 Jul; 127(27):9904-12. PubMed ID: 15998097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(IV)-oxo compounds.
    Planas O; Clémancey M; Latour JM; Company A; Costas M
    Chem Commun (Camb); 2014 Sep; 50(74):10887-90. PubMed ID: 25093575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds.
    Biswas AN; Puri M; Meier KK; Oloo WN; Rohde GT; Bominaar EL; Münck E; Que L
    J Am Chem Soc; 2015 Feb; 137(7):2428-31. PubMed ID: 25674662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tailor-made ligand to mimic the active site of diiron enzymes: an air-oxidized high-valent Fe(III) h.s.(μ-O)2Fe(IV) h.s. species.
    Strautmann JB; Walleck S; Bögge H; Stammler A; Glaser T
    Chem Commun (Camb); 2011 Jan; 47(2):695-7. PubMed ID: 21088779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D; Sastry GN; de Visser SP
    J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).
    Verma P; Vogiatzis KD; Planas N; Borycz J; Xiao DJ; Long JR; Gagliardi L; Truhlar DG
    J Am Chem Soc; 2015 May; 137(17):5770-81. PubMed ID: 25882096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Million-fold activation of the [Fe(2)(micro-O)(2)] diamond core for C-H bond cleavage.
    Xue G; De Hont R; Münck E; Que L
    Nat Chem; 2010 May; 2(5):400-5. PubMed ID: 20414242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron density distributions of redox active mixed valence carboxylate bridged trinuclear iron complexes.
    Overgaard J; Larsen FK; Schiøtt B; Iversen BB
    J Am Chem Soc; 2003 Sep; 125(36):11088-99. PubMed ID: 12952491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-valent nonheme iron-oxo species in biomimetic oxidations.
    Shan X; Que L
    J Inorg Biochem; 2006 Apr; 100(4):421-33. PubMed ID: 16530841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aliphatic C-H Bond Halogenation by Iron(II)-α-Keto Acid Complexes and O
    Jana RD; Sheet D; Chatterjee S; Paine TK
    Inorg Chem; 2018 Aug; 57(15):8769-8777. PubMed ID: 30009593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic iron(III) complexes of N3O and N3O2 donor ligands: protonation of coordinated ethanolate donor enhances dioxygenase activity.
    Sundaravel K; Sankaralingam M; Suresh E; Palaniandavar M
    Dalton Trans; 2011 Sep; 40(33):8444-58. PubMed ID: 21785763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a high-spin non-heme {FeNO}(8) complex: implications for the reactivity of iron nitroxyl species in biology.
    Speelman AL; Lehnert N
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12283-7. PubMed ID: 24115281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase.
    Yoshioka Y; Satoh H; Mitani M
    J Inorg Biochem; 2007 Oct; 101(10):1410-27. PubMed ID: 17662458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.