BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21717577)

  • 1. Photoinduced reversible topographical changes on diarylethene microcrystalline surfaces with biomimetic wetting properties.
    Nishikawa N; Uyama A; Kamitanaka T; Mayama H; Kojima Y; Yokojima S; Nakamura S; Tsujii K; Uchida K
    Chem Asian J; 2011 Sep; 6(9):2400-6. PubMed ID: 21717577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical explanation of the photoswitchable superhydrophobicity of diarylethene microcrystalline surfaces.
    Nishikawa N; Mayama H; Nonomura Y; Fujinaga N; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2014 Sep; 30(35):10643-50. PubMed ID: 25111681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochromic Crystalline Systems Mimicking Bio-Functions.
    Uchida K; Nishimura R; Hatano E; Mayama H; Yokojima S
    Chemistry; 2018 Jun; 24(34):8491-8506. PubMed ID: 29385287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced self-epitaxial crystal growth of a diarylethene derivative with antireflection moth-eye and superhydrophobic lotus effects.
    Nishikawa N; Sakiyama S; Yamazoe S; Kojima Y; Nishihara E; Tsujioka T; Mayama H; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2013 Jun; 29(25):8164-9. PubMed ID: 23734978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced formation of superhydrophobic surface on which contact angle of a water droplet exceeds 170° by reversible topographical changes on a diarylethene microcrystalline surface.
    Nishikawa N; Kiyohara H; Sakiyama S; Yamazoe S; Mayama H; Tsujioka T; Kojima Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2012 Dec; 28(51):17817-24. PubMed ID: 23198739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible photocontrol of surface wettability between hydrophilic and superhydrophobic surfaces on an asymmetric diarylethene solid surface.
    Uyama A; Yamazoe S; Shigematsu S; Morimoto M; Yokojima S; Mayama H; Kojima Y; Nakamura S; Uchida K
    Langmuir; 2011 May; 27(10):6395-400. PubMed ID: 21504166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.
    Nishimura R; Hyodo K; Sawaguchi H; Yamamoto Y; Nonomura Y; Mayama H; Yokojima S; Nakamura S; Uchida K
    J Am Chem Soc; 2016 Aug; 138(32):10299-303. PubMed ID: 27455376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions.
    Yin L; Zhu L; Wang Q; Ding J; Chen Q
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1254-60. PubMed ID: 21443252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of surface wettability and photomicropatterning with a polymorphic diarylethene crystal upon photoirradiation.
    Kitagawa D; Yamashita I; Kobatake S
    Chemistry; 2011 Aug; 17(35):9825-31. PubMed ID: 21748813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible superhydrophilicity and superhydrophobicity on a lotus-leaf pattern.
    de Leon A; Advincula RC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22666-72. PubMed ID: 25412015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Straightforward Fabrication of Double Roughness Structures on a Microcrystalline Film of a Diarylethene Derivative.
    Hashimoto Y; Hase A; Shiromae R; Nishimura R; Morimoto M; Hattori Y; Mayama H; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2024 Apr; 40(14):7661-7668. PubMed ID: 38535724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate.
    Wu Y; Hang T; Yu Z; Xu L; Li M
    Chem Commun (Camb); 2014 Aug; 50(61):8405-7. PubMed ID: 24946911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties.
    Qu M; Zhao G; Cao X; Zhang J
    Langmuir; 2008 Apr; 24(8):4185-9. PubMed ID: 18324852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beauty of lotus is more than skin deep: highly buoyant superhydrophobic films.
    Choi Y; Brugarolas T; Kang SM; Park BJ; Kim BS; Lee CS; Lee D
    ACS Appl Mater Interfaces; 2014 May; 6(10):7009-13. PubMed ID: 24801001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.