These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21717747)

  • 1. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].
    Lai B; Qin HK; Zhou YX; Song YD; Cheng JY; Sun LD
    Huan Jing Ke Xue; 2011 Apr; 32(4):1055-9. PubMed ID: 21717747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimization of acrylic fiber polymerization wastewater treatment condition by three-dimensional electrode].
    Ren Y; Jiang JY; Zhou YX; Chen YF; Xu YS
    Huan Jing Ke Xue; 2011 Sep; 32(9):2588-92. PubMed ID: 22165225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of the toxic and refractory pollutants in acrylonitrile-butadiene-styrene resin manufacturing wastewater by gas chromatography spectrometry with a mass or flame ionization detector.
    Lai B; Zhou Y; Yang P; Wang K
    J Chromatogr A; 2012 Jun; 1244():161-7. PubMed ID: 22621884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.
    Cheng H; Xu W; Liu J; Wang H; He Y; Chen G
    J Hazard Mater; 2007 Jul; 146(1-2):385-92. PubMed ID: 17229523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.
    Wang CC; Lee CM
    Water Sci Technol; 2006; 53(6):181-6. PubMed ID: 16749456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-stage system coupling hydrolytic acidification with algal microcosms for treatment of wastewater from the manufacture of acrylonitrile butadiene styrene (ABS) resin.
    Huo S; Zhu F; Zou B; Xu L; Cui F; You W
    Biotechnol Lett; 2018 Apr; 40(4):689-696. PubMed ID: 29349626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.
    Lai B; Zhou Y; Wang J; Zhang Y; Chen Z
    Environ Technol; 2014; 35(5-8):973-83. PubMed ID: 24645481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrochemical oxidation of dual electrodes with iron promoting used for the treatment of wastewater from acrylonitrile production].
    Chu YY; Zhang QH; Qian Y; Bai MJ
    Huan Jing Ke Xue; 2009 Jul; 30(7):1949-54. PubMed ID: 19774990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater.
    Yan Z; Xie S; Yang M
    Environ Sci Pollut Res Int; 2024 Feb; 31(8):11886-11897. PubMed ID: 38225488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.
    Yang X
    J Hazard Mater; 2009 Sep; 169(1-3):480-5. PubMed ID: 19398266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced reduction of sulfate by iron-carbon microelectrolysis: interaction mechanism between microelectrolysis and microorganisms.
    Li H; Di J; Dong Y; Bao S; Fu S
    Environ Sci Pollut Res Int; 2024 May; 31(21):31577-31589. PubMed ID: 38635092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of a cyclic anoxic/aerobic two-stage MBR for treating ABS resin manufacturing wastewater.
    Chang CY; Tanong K; Chiemchaisri C; Vigneswaran S
    Bioresour Technol; 2011 May; 102(9):5325-30. PubMed ID: 21190843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the electrochemical treatment for distillery wastewater.
    Krishna BM; Murthy U; Kumar BM; Lokesh KS
    J Environ Sci Eng; 2011 Apr; 53(2):191-4. PubMed ID: 23033702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylonitrile removal from synthetic wastewater and actual industrial wastewater with high strength nitrogen using a pure bacteria culture.
    Wang CC; Lee CM; Cheng PW
    Water Sci Technol; 2001; 43(2):349-54. PubMed ID: 11380201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of the epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin.
    Wang CC; Lee CM
    J Hazard Mater; 2007 Jun; 145(1-2):136-41. PubMed ID: 17161908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three advanced oxidation processes for the treatment of the wastewater from acrylonitrile production.
    Yan-yang C; Yi Q; Mao-juan B
    Water Sci Technol; 2009; 60(11):2991-9. PubMed ID: 19934521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denitrification with acrylonitrile as a substrate using pure bacteria cultures isolated from acrylonitrile-butadiene-styrene wastewater.
    Wang CC; Lee CM
    Environ Int; 2001 Apr; 26(4):237-41. PubMed ID: 11341291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocoagulation of wastewater from almond industry.
    Valero D; Ortiz JM; García V; Expósito E; Montiel V; Aldaz A
    Chemosphere; 2011 Aug; 84(9):1290-5. PubMed ID: 21683427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of acid blue 40 dye solution and dye house wastewater from textile industry by photo-assisted electrochemical process.
    Moraes PB; Pelegrino RR; Bertazzoli R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2131-8. PubMed ID: 18074285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.