These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Bouis HE Proc Nutr Soc; 2003 May; 62(2):403-11. PubMed ID: 14506888 [TBL] [Abstract][Full Text] [Related]
3. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus. Bouis H World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297 [TBL] [Abstract][Full Text] [Related]
4. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441 [TBL] [Abstract][Full Text] [Related]
6. Breeding and adoption of biofortified crops and their nutritional impact on human health. Kumar S; DePauw RM; Kumar S; Kumar J; Kumar S; Pandey MP Ann N Y Acad Sci; 2023 Feb; 1520(1):5-19. PubMed ID: 36479674 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. La Frano MR; de Moura FF; Boy E; Lönnerdal B; Burri BJ Nutr Rev; 2014 May; 72(5):289-307. PubMed ID: 24689451 [TBL] [Abstract][Full Text] [Related]
8. Plant breeding: a new tool for fighting micronutrient malnutrition. Bouis HE J Nutr; 2002 Mar; 132(3):491S-494S. PubMed ID: 11880577 [TBL] [Abstract][Full Text] [Related]
9. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals. Mejia LA; Dary O; Boukerdenna H Ann N Y Acad Sci; 2017 Feb; 1390(1):47-58. PubMed ID: 27801985 [TBL] [Abstract][Full Text] [Related]
11. Mineral biofortification strategies for food staples: the example of common bean. Blair MW J Agric Food Chem; 2013 Sep; 61(35):8287-94. PubMed ID: 23848266 [TBL] [Abstract][Full Text] [Related]
12. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Hotz C; McClafferty B Food Nutr Bull; 2007 Jun; 28(2 Suppl):S271-9. PubMed ID: 17658073 [TBL] [Abstract][Full Text] [Related]
13. Simulation model of the impact of biofortification on the absorption of adequate amounts of zinc and iron among Mexican women and preschool children. Denova-Gutiérrez E; García-Guerra A; Flores-Aldana M; Rodríguez-Ramírez S; Hotz C Food Nutr Bull; 2008 Sep; 29(3):203-12. PubMed ID: 18947033 [TBL] [Abstract][Full Text] [Related]
14. Three criteria for establishing the usefulness of biotechnology for reducing micronutrient malnutrition. Bouis HE Food Nutr Bull; 2002 Dec; 23(4):351-3. PubMed ID: 16619738 [TBL] [Abstract][Full Text] [Related]
15. Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition. Hefferon K Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678136 [TBL] [Abstract][Full Text] [Related]
16. Biofortification of crops with nutrients: factors affecting utilization and storage. Díaz-Gómez J; Twyman RM; Zhu C; Farré G; Serrano JC; Portero-Otin M; Muñoz P; Sandmann G; Capell T; Christou P Curr Opin Biotechnol; 2017 Apr; 44():115-123. PubMed ID: 28068552 [TBL] [Abstract][Full Text] [Related]
17. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. Cakmak I J Trace Elem Med Biol; 2009; 23(4):281-9. PubMed ID: 19747624 [TBL] [Abstract][Full Text] [Related]
19. Potential impact and cost-effectiveness of multi-biofortified rice in China. De Steur H; Gellynck X; Blancquaert D; Lambert W; Van Der Straeten D; Qaim M N Biotechnol; 2012 Feb; 29(3):432-42. PubMed ID: 22154941 [TBL] [Abstract][Full Text] [Related]