These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21718010)

  • 1. Carbon nanotube electron ionization source for portable mass spectrometry.
    Evans-Nguyen T; Parker CB; Hammock C; Monica AH; Adams E; Becker L; Glass JT; Cotter RJ
    Anal Chem; 2011 Sep; 83(17):6527-31. PubMed ID: 21718010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectron emission as an alternative electron impact ionization source for ion trap mass spectrometry.
    Gamez G; Zhu L; Schmitz TA; Zenobi R
    Anal Chem; 2008 Sep; 80(17):6791-5. PubMed ID: 18665611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel planar field emission of ultra-thin individual carbon nanotubes.
    Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D
    Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of carbon nanotube field emitters on single strand carbon fiber: a linear electron source.
    Kim HJ; Bae MJ; Kim YC; Cho ES; Sohn YC; Kim DY; Lee SE; Kang HS; Han IT; Kim YH; Patole SP; Yoo JB
    Nanotechnology; 2011 Mar; 22(9):095602. PubMed ID: 21270492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single wall carbon nanotube supports for portable direct methanol fuel cells.
    Girishkumar G; Hall TD; Vinodgopal K; Kamat PV
    J Phys Chem B; 2006 Jan; 110(1):107-14. PubMed ID: 16471506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.
    Kim JW; Jeong JW; Kang JT; Choi S; Ahn S; Song YH
    Nanotechnology; 2014 Feb; 25(6):065201. PubMed ID: 24434798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis.
    Peng L; You SJ; Wang JY
    Biosens Bioelectron; 2010 Jan; 25(5):1248-51. PubMed ID: 19897352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertically aligned carbon-nanotube arrays showing Schottky behavior at room temperature.
    Jung SH; Jeong SH; Kim SU; Hwang SK; Lee PS; Lee KH; Ko JH; Bae E; Kang D; Park W; Oh H; Kim JJ; Kim H; Park CG
    Small; 2005 May; 1(5):553-9. PubMed ID: 17193485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.
    Bo Z; Yu K; Lu G; Mao S; Chen J; Fan FG
    Environ Sci Technol; 2010 Aug; 44(16):6337-42. PubMed ID: 20597541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-nanotube-alginate composite modified electrode fabricated by in situ gelation for capillary electrophoresis.
    Wei B; Wang J; Chen Z; Chen G
    Chemistry; 2008; 14(31):9779-85. PubMed ID: 18773408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.
    Radauscher EJ; Keil AD; Wells M; Amsden JJ; Piascik JR; Parker CB; Stoner BR; Glass JT
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1903-10. PubMed ID: 26133527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of oligodeoxynucleotides by electron detachment dissociation fourier transform ion cyclotron resonance mass spectrometry.
    Yang J; Mo J; Adamson JT; Håkansson K
    Anal Chem; 2005 Mar; 77(6):1876-82. PubMed ID: 15762599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of carbon nanotube and nanofibre composite film electrode for electrical removal of cupric ions.
    Zhan Y; Li H; Pan L; Zhang Y; Chen Y; Sun Z
    Water Sci Technol; 2010; 61(6):1427-32. PubMed ID: 20351421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.
    Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y
    Small; 2009 Aug; 5(15):1769-75. PubMed ID: 19360721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes with platinum nano-islands as glucose biofuel cell electrodes.
    Ryu J; Kim HS; Hahn HT; Lashmore D
    Biosens Bioelectron; 2010 Mar; 25(7):1603-8. PubMed ID: 20022482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.