BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21718033)

  • 21. Evolution of resveratrol and piceid contents during the industrial winemaking process of sherry wine.
    Roldán A; Palacios V; Caro I; Pérez L
    J Agric Food Chem; 2010 Apr; 58(7):4268-73. PubMed ID: 20232794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines.
    Piñeiro Z; Cantos-Villar E; Palma M; Puertas B
    J Agric Food Chem; 2011 Nov; 59(21):11683-9. PubMed ID: 21950381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of addition of commercial grape seed tannins on phenolic composition, chromatic characteristics, and antioxidant activity of red wine.
    Neves AC; Spranger MI; Zhao Y; Leandro MC; Sun B
    J Agric Food Chem; 2010 Nov; 58(22):11775-82. PubMed ID: 21028822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products.
    Hurst WJ; Glinski JA; Miller KB; Apgar J; Davey MH; Stuart DA
    J Agric Food Chem; 2008 Sep; 56(18):8374-8. PubMed ID: 18759443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Climatic Conditions on the Resveratrol Concentration in Blend of
    Rocchetti G; Ferrari F; Trevisan M; Bavaresco L
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33466601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenolic composition and antioxidant activity in sparkling wines: modulation by the ageing on lees.
    Stefenon CA; Bonesi Cde M; Marzarotto V; Barnabé D; Spinelli FR; Webber V; Vanderlinde R
    Food Chem; 2014 Feb; 145():292-9. PubMed ID: 24128480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant and antimicrobial potentials of Serbian red wines produced from international Vitis vinifera grape varieties.
    Radovanović AN; Jovančićević BS; Radovanović BC; Mihajilov-Krstev T; Zvezdanović JB
    J Sci Food Agric; 2012 Aug; 92(10):2154-61. PubMed ID: 22318878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristic phenolic composition of single-cultivar red wines of the Canary Islands (Spain).
    Pérez-Trujillo JP; Hernández Z; López-Bellido FJ; Hermosín-Gutiérrez I
    J Agric Food Chem; 2011 Jun; 59(11):6150-64. PubMed ID: 21548631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hopeaphenol: the first resveratrol tetramer in wines from North Africa.
    Guebailia HA; Chira K; Richard T; Mabrouk T; Furiga A; Vitrac X; Monti JP; Delaunay JC; Mérillon JM
    J Agric Food Chem; 2006 Dec; 54(25):9559-64. PubMed ID: 17147446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particularities of Syrah wines from different growing regions of Southern Brazil: grapevine phenology and bioactive compounds.
    Sartor S; Malinovski LI; Caliari V; da Silva AL; Bordignon-Luiz MT
    J Food Sci Technol; 2017 May; 54(6):1414-1424. PubMed ID: 28559600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry.
    Buiarelli F; Coccioli F; Jasionowska R; Merolle M; Terracciano A
    Rapid Commun Mass Spectrom; 2007; 21(18):2955-64. PubMed ID: 17676713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant capacity of selected wines.
    Jamroz A; Bełtowski J
    Med Sci Monit; 2001; 7(6):1198-202. PubMed ID: 11687730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does white wine qualify for French paradox? Comparison of the cardioprotective effects of red and white wines and their constituents: resveratrol, tyrosol, and hydroxytyrosol.
    Dudley JI; Lekli I; Mukherjee S; Das M; Bertelli AA; Das DK
    J Agric Food Chem; 2008 Oct; 56(20):9362-73. PubMed ID: 18821770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of ochratoxin A from contaminated red wines by repassage over grape pomaces.
    Solfrizzo M; Avantaggiato G; Panzarini G; Visconti A
    J Agric Food Chem; 2010 Jan; 58(1):317-23. PubMed ID: 19919032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of viticulture practices on concentration of polyphenolic compounds and total antioxidant capacity of Southern Italy red wines.
    Coletta A; Berto S; Crupi P; Cravero MC; Tamborra P; Antonacci D; Daniele PG; Prenesti E
    Food Chem; 2014; 152():467-74. PubMed ID: 24444963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes during storage in conventional and ecological wine: phenolic content and antioxidant activity.
    Zafrilla P; Morillas J; Mulero J; Cayuela JM; Martínez-Cachá A; Pardo F; López Nicolás JM
    J Agric Food Chem; 2003 Jul; 51(16):4694-700. PubMed ID: 14705898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.
    Fernández K; Kennedy JA; Agosin E
    J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies.
    Rivero-Pérez MD; Muñiz P; Gonzalez-Sanjosé ML
    J Agric Food Chem; 2007 Jul; 55(14):5476-83. PubMed ID: 17579427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aging effect on the pigment composition and color of Vitis vinifera L. Cv. Tannat wines. Contribution of the main pigment families to wine color.
    Boido E; Alcalde-Eon C; Carrau F; Dellacassa E; Rivas-Gonzalo JC
    J Agric Food Chem; 2006 Sep; 54(18):6692-704. PubMed ID: 16939328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.