These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21718514)
1. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. Larsson J; Nylander JA; Bergman B BMC Evol Biol; 2011 Jun; 11():187. PubMed ID: 21718514 [TBL] [Abstract][Full Text] [Related]
2. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications. Stucken K; John U; Cembella A; Murillo AA; Soto-Liebe K; Fuentes-Valdés JJ; Friedel M; Plominsky AM; Vásquez M; Glöckner G PLoS One; 2010 Feb; 5(2):e9235. PubMed ID: 20169071 [TBL] [Abstract][Full Text] [Related]
3. Local hopping mobile DNA implicated in pseudogene formation and reductive evolution in an obligate cyanobacteria-plant symbiosis. Vigil-Stenman T; Larsson J; Nylander JA; Bergman B BMC Genomics; 2015 Mar; 16(1):193. PubMed ID: 25885210 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of the genomes of cyanobacteria and plants. Sato N Genome Inform; 2002; 13():173-82. PubMed ID: 14571386 [TBL] [Abstract][Full Text] [Related]
5. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
6. Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes. Xu M; Su Z BMC Genomics; 2009 Jan; 10():23. PubMed ID: 19146659 [TBL] [Abstract][Full Text] [Related]
8. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Shih PM; Wu D; Latifi A; Axen SD; Fewer DP; Talla E; Calteau A; Cai F; Tandeau de Marsac N; Rippka R; Herdman M; Sivonen K; Coursin T; Laurent T; Goodwin L; Nolan M; Davenport KW; Han CS; Rubin EM; Eisen JA; Woyke T; Gugger M; Kerfeld CA Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1053-8. PubMed ID: 23277585 [TBL] [Abstract][Full Text] [Related]
9. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. Beck C; Knoop H; Axmann IM; Steuer R BMC Genomics; 2012 Feb; 13():56. PubMed ID: 22300633 [TBL] [Abstract][Full Text] [Related]
10. The modular architecture of sigma factors in cyanobacteria: a framework to assess their diversity and understand their evolution. Gevin M; Latifi A; Talla E BMC Genomics; 2024 May; 25(1):512. PubMed ID: 38783209 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172 [TBL] [Abstract][Full Text] [Related]
12. Gene copy number variation and its significance in cyanobacterial phylogeny. Schirrmeister BE; Dalquen DA; Anisimova M; Bagheri HC BMC Microbiol; 2012 Aug; 12():177. PubMed ID: 22894826 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria. Jiang Q; Qin S; Wu QY BMC Genomics; 2010 Mar; 11():198. PubMed ID: 20334693 [TBL] [Abstract][Full Text] [Related]
15. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. Chen MY; Teng WK; Zhao L; Hu CX; Zhou YK; Han BP; Song LR; Shu WS ISME J; 2021 Jan; 15(1):211-227. PubMed ID: 32943748 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche. Miller SR; Wood AM; Blankenship RE; Kim M; Ferriera S Genome Biol Evol; 2011; 3():601-13. PubMed ID: 21697100 [TBL] [Abstract][Full Text] [Related]
17. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Nakayama T; Nomura M; Takano Y; Tanifuji G; Shiba K; Inaba K; Inagaki Y; Kawata M Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15973-15978. PubMed ID: 31235587 [TBL] [Abstract][Full Text] [Related]
18. Genomic and systems evolution in Vibrionaceae species. Gu J; Neary J; Cai H; Moshfeghian A; Rodriguez SA; Lilburn TG; Wang Y BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S11. PubMed ID: 19594870 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide comparison of cyanobacterial transposable elements, potential genetic diversity indicators. Lin S; Haas S; Zemojtel T; Xiao P; Vingron M; Li R Gene; 2011 Mar; 473(2):139-49. PubMed ID: 21156198 [TBL] [Abstract][Full Text] [Related]
20. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. Grote J; Thrash JC; Huggett MJ; Landry ZC; Carini P; Giovannoni SJ; Rappé MS mBio; 2012; 3(5):. PubMed ID: 22991429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]