These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21718759)

  • 1. Catching falling objects: the role of the cerebellum in processing sensory-motor errors that may influence updating of feedforward commands. An fMRI study.
    Fautrelle L; Pichat C; Ricolfi F; Peyrin C; Bonnetblanc F
    Neuroscience; 2011 Sep; 190():135-44. PubMed ID: 21718759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to predict the future: the cerebellum adapts feedforward movement control.
    Bastian AJ
    Curr Opin Neurobiol; 2006 Dec; 16(6):645-9. PubMed ID: 17071073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive and motor loops of the human cerebro-cerebellar system.
    Salmi J; Pallesen KJ; Neuvonen T; Brattico E; Korvenoja A; Salonen O; Carlson S
    J Cogn Neurosci; 2010 Nov; 22(11):2663-76. PubMed ID: 19925191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of sensory and motor representations of single fingers in the human cerebellum.
    Wiestler T; McGonigle DJ; Diedrichsen J
    J Neurophysiol; 2011 Jun; 105(6):3042-53. PubMed ID: 21471398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cerebellum coordinates eye and hand tracking movements.
    Miall RC; Reckess GZ; Imamizu H
    Nat Neurosci; 2001 Jun; 4(6):638-44. PubMed ID: 11369946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedforward and feedback processes in motor control.
    Seidler RD; Noll DC; Thiers G
    Neuroimage; 2004 Aug; 22(4):1775-83. PubMed ID: 15275933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS.
    Bijsterbosch JD; Lee KH; Hunter MD; Tsoi DT; Lankappa S; Wilkinson ID; Barker AT; Woodruff PW
    J Cogn Neurosci; 2011 May; 23(5):1100-12. PubMed ID: 20465354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus.
    Sokolov AA; Erb M; Gharabaghi A; Grodd W; Tatagiba MS; Pavlova MA
    Neuroimage; 2012 Feb; 59(3):2824-30. PubMed ID: 22019860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebro-cerebellar interactions underlying temporal information processing.
    Aso K; Hanakawa T; Aso T; Fukuyama H
    J Cogn Neurosci; 2010 Dec; 22(12):2913-25. PubMed ID: 20044898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural basis of agency: an fMRI study.
    Yomogida Y; Sugiura M; Sassa Y; Wakusawa K; Sekiguchi A; Fukushima A; Takeuchi H; Horie K; Sato S; Kawashima R
    Neuroimage; 2010 Mar; 50(1):198-207. PubMed ID: 20026225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired and preserved aspects of independent finger control in patients with cerebellar damage.
    Brandauer B; Hermsdörfer J; Geissendörfer T; Schoch B; Gizewski ER; Timmann D
    J Neurophysiol; 2012 Feb; 107(4):1080-93. PubMed ID: 22114161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.
    Cullen KE; Brooks JX
    Cerebellum; 2015 Feb; 14(1):31-4. PubMed ID: 25287644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Effects of Cerebellar Degeneration on Feedforward versus Feedback Control across Speech and Reaching Movements.
    Parrell B; Kim HE; Breska A; Saxena A; Ivry R
    J Neurosci; 2021 Oct; 41(42):8779-8789. PubMed ID: 34446570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal feature of BOLD responses varies with temporal patterns of movement.
    Tomatsu S; Someya Y; Sung YW; Ogawa S; Kakei S
    Neurosci Res; 2008 Nov; 62(3):160-7. PubMed ID: 18789981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuroimage; 2004 Apr; 21(4):1416-27. PubMed ID: 15050567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel technique for examining human brain activity associated with pedaling using fMRI.
    Mehta JP; Verber MD; Wieser JA; Schmit BD; Schindler-Ivens SM
    J Neurosci Methods; 2009 May; 179(2):230-9. PubMed ID: 19428532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relevance of sensory input for the cerebellar control of movements.
    Jueptner M; Ottinger S; Fellows SJ; Adamschewski J; Flerich L; Müller SP; Diener HC; Thilmann AF; Weiller C
    Neuroimage; 1997 Jan; 5(1):41-8. PubMed ID: 9038283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.