BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21718767)

  • 21. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy.
    Awa K; Shinzawa H; Ozaki Y
    Appl Spectrosc; 2014; 68(6):625-32. PubMed ID: 25014717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S; Betz G
    Int J Pharm; 2011 Jun; 411(1-2):152-61. PubMed ID: 21497644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of low shear, high shear, and fluid bed granulation during low dose tablet process development.
    Hausman DS
    Drug Dev Ind Pharm; 2004 Mar; 30(3):259-66. PubMed ID: 15109025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Application of quality by design in granulation process for ginkgo leaf tablet (Ⅳ): influence and control of raw materials' quality variation].
    Cui XL; Xu B; Liu JW; Shi GL; Shi XY; Qiao YJ
    Zhongguo Zhong Yao Za Zhi; 2017 Mar; 42(6):1055-1061. PubMed ID: 29027416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets.
    Sun WJ; Sun CC
    Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.
    Jagia M; Trivedi M; Dave RH
    AAPS PharmSciTech; 2016 Aug; 17(4):995-1006. PubMed ID: 26729530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Process optimization for continuous extrusion wet granulation.
    Tan L; Carella AJ; Ren Y; Lo JB
    Pharm Dev Technol; 2011 Aug; 16(4):302-15. PubMed ID: 20367553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attribute transmission and effects of diluents and granulation liquids on granule properties and tablet quality for high shear wet granulation and tableting process.
    Wang L; Zhao L; Hong Y; Shen L; Lin X
    Int J Pharm; 2023 Jul; 642():123177. PubMed ID: 37364781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability.
    Thoorens G; Krier F; Rozet E; Carlin B; Evrard B
    Int J Pharm; 2015 Jul; 490(1-2):47-54. PubMed ID: 25981619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the influence of high-shear granulation process on the compressibility of microcrystalline cellulose.
    Xiao B; Zhang J; Geng L; Tang X; Wang Y; Yin T; Zhang Y; Gou J; He H
    Int J Pharm; 2022 Sep; 625():122075. PubMed ID: 35931395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of microcrystalline cellulose material attributes: a case study on continuous twin screw granulation.
    Fonteyne M; Correia A; De Plecker S; Vercruysse J; Ilić I; Zhou Q; Vervaet C; Remon JP; Onofre F; Bulone V; De Beer T
    Int J Pharm; 2015 Jan; 478(2):705-17. PubMed ID: 25479098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review.
    Thoorens G; Krier F; Leclercq B; Carlin B; Evrard B
    Int J Pharm; 2014 Oct; 473(1-2):64-72. PubMed ID: 24993785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coprocessing of cellulose II with amorphous silicon dioxide: effect of silicification on the powder and tableting properties.
    Rojas J; Kumar V
    Drug Dev Ind Pharm; 2012 Feb; 38(2):209-26. PubMed ID: 22088231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Process and formulation characterizations of the thermal adhesion granulation (TAG) process for improving granular properties.
    Lin HL; Ho HO; Chen CC; Yeh TS; Sheu MT
    Int J Pharm; 2008 Jun; 357(1-2):206-12. PubMed ID: 18353570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes.
    Veronica N; Goh HP; Kang CYX; Liew CV; Heng PWS
    Int J Pharm; 2018 Dec; 553(1-2):474-482. PubMed ID: 30385375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the origins of content non-uniformity in high-shear wet granulation.
    Oka S; Smrčka D; Kataria A; Emady H; Muzzio F; Štěpánek F; Ramachandran R
    Int J Pharm; 2017 Aug; 528(1-2):578-585. PubMed ID: 28627457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.