BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21718840)

  • 1. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness.
    Balachandran K; Bakay MA; Connolly JM; Zhang X; Yoganathan AP; Levy RJ
    Ann Thorac Surg; 2011 Jul; 92(1):147-53. PubMed ID: 21718840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease.
    Balachandran K; Sucosky P; Jo H; Yoganathan AP
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H756-64. PubMed ID: 19151254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT(2A) receptor-dependent pathway.
    Balachandran K; Hussain S; Yap CH; Padala M; Chester AH; Yoganathan AP
    Cardiovasc Pathol; 2012; 21(3):206-13. PubMed ID: 21865058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation.
    Driesbaugh KH; Branchetti E; Grau JB; Keeney SJ; Glass K; Oyama MA; Rioux N; Ayoub S; Sacks MS; Quackenbush J; Levy RJ; Ferrari G
    J Mol Cell Cardiol; 2018 Feb; 115():94-103. PubMed ID: 29291394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated Serotonin Interacts with Angiotensin-II to Result in Altered Valve Interstitial Cell Contractility and Remodeling.
    Perez J; Diaz N; Tandon I; Plate R; Martindale C; Balachandran K
    Cardiovasc Eng Technol; 2018 Jun; 9(2):168-180. PubMed ID: 28247311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fenfluramine disrupts the mitral valve interstitial cell response to serotonin.
    Connolly JM; Bakay MA; Fulmer JT; Gorman RC; Gorman JH; Oyama MA; Levy RJ
    Am J Pathol; 2009 Sep; 175(3):988-97. PubMed ID: 19679875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast.
    Merryman WD; Lukoff HD; Long RA; Engelmayr GC; Hopkins RA; Sacks MS
    Cardiovasc Pathol; 2007; 16(5):268-76. PubMed ID: 17868877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch.
    Balachandran K; Konduri S; Sucosky P; Jo H; Yoganathan AP
    Ann Biomed Eng; 2006 Nov; 34(11):1655-65. PubMed ID: 17031600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-hydroxytryptamine (5HT)-induced valvulopathy: compositional valvular alterations are associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley rats.
    Elangbam CS; Job LE; Zadrozny LM; Barton JC; Yoon LW; Gates LD; Slocum N
    Exp Toxicol Pathol; 2008 Aug; 60(4-5):253-62. PubMed ID: 18511249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells.
    Jian B; Xu J; Connolly J; Savani RC; Narula N; Liang B; Levy RJ
    Am J Pathol; 2002 Dec; 161(6):2111-21. PubMed ID: 12466127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis.
    Kyritsi K; Chen L; O'Brien A; Francis H; Hein TW; Venter J; Wu N; Ceci L; Zhou T; Zawieja D; Gashev AA; Meng F; Invernizzi P; Fabris L; Wu C; Skill NJ; Saxena R; Liangpunsakul S; Alpini G; Glaser SS
    Hepatology; 2020 Mar; 71(3):990-1008. PubMed ID: 31344280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells.
    Xu J; Jian B; Chu R; Lu Z; Li Q; Dunlop J; Rosenzweig-Lipson S; McGonigle P; Levy RJ; Liang B
    Am J Pathol; 2002 Dec; 161(6):2209-18. PubMed ID: 12466135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited commentary.
    Selzman CH
    Ann Thorac Surg; 2011 Jul; 92(1):153-4. PubMed ID: 21718841
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves.
    Myles V; Liao J; Warnock JN
    J Biomech Eng; 2014 Jan; 136(1):011011. PubMed ID: 24240552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible secretion of glycosaminoglycans and proteoglycans by cyclically stretched valvular cells in 3D culture.
    Gupta V; Werdenberg JA; Lawrence BD; Mendez JS; Stephens EH; Grande-Allen KJ
    Ann Biomed Eng; 2008 Jul; 36(7):1092-103. PubMed ID: 18425579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells.
    Dahal S; Huang P; Murray BT; Mahler GJ
    J Biomed Mater Res A; 2017 Oct; 105(10):2729-2741. PubMed ID: 28589644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch.
    Ku CH; Johnson PH; Batten P; Sarathchandra P; Chambers RC; Taylor PM; Yacoub MH; Chester AH
    Cardiovasc Res; 2006 Aug; 71(3):548-56. PubMed ID: 16740254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells.
    Patel V; Carrion K; Hollands A; Hinton A; Gallegos T; Dyo J; Sasik R; Leire E; Hardiman G; Mohamed SA; Nigam S; King CC; Nizet V; Nigam V
    FASEB J; 2015 May; 29(5):1859-68. PubMed ID: 25630970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.
    Lei Y; Masjedi S; Ferdous Z
    J Mech Behav Biomed Mater; 2017 Nov; 75():351-358. PubMed ID: 28783560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLR4 Stimulation Promotes Human AVIC Fibrogenic Activity through Upregulation of Neurotrophin 3 Production.
    Yao Q; The E; Ao L; Zhai Y; Osterholt MK; Fullerton DA; Meng X
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32074942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.