These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
626 related articles for article (PubMed ID: 21719072)
1. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions. Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072 [TBL] [Abstract][Full Text] [Related]
2. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
3. Co-gasification of solid waste and lignite - a case study for Western Macedonia. Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995 [TBL] [Abstract][Full Text] [Related]
4. Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Zhang Y; McKechnie J; Cormier D; Lyng R; Mabee W; Ogino A; Maclean HL Environ Sci Technol; 2010 Jan; 44(1):538-44. PubMed ID: 19961171 [TBL] [Abstract][Full Text] [Related]
5. Options for near-term phaseout of CO(2) emissions from coal use in the United States. Kharecha PA; Kutscher CF; Hansen JE; Mazria E Environ Sci Technol; 2010 Jun; 44(11):4050-62. PubMed ID: 20429611 [TBL] [Abstract][Full Text] [Related]
6. Coal and biomass to fuels and power. Williams RH; Liu G; Kreutz TG; Larson ED Annu Rev Chem Biomol Eng; 2011; 2():529-53. PubMed ID: 22432630 [TBL] [Abstract][Full Text] [Related]
7. Comparing the greenhouse gas emissions from three alternative waste combustion concepts. Vainikka P; Tsupari E; Sipilä K; Hupa M Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250 [TBL] [Abstract][Full Text] [Related]
8. Reduction of fuel side costs due to biomass co-combustion. Wils A; Calmano W; Dettmann P; Kaltschmitt M; Ecke H J Hazard Mater; 2012 Mar; 207-208():147-51. PubMed ID: 21514049 [TBL] [Abstract][Full Text] [Related]
9. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration. Dang Q; Mba Wright M; Brown RC Environ Sci Technol; 2015 Dec; 49(24):14688-95. PubMed ID: 26545153 [TBL] [Abstract][Full Text] [Related]
10. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants. Lee DW; Bae JS; Lee YJ; Park SJ; Hong JC; Lee BH; Jeon CH; Choi YC Environ Sci Technol; 2013 Feb; 47(3):1704-10. PubMed ID: 23286316 [TBL] [Abstract][Full Text] [Related]
11. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector. Lu X; Salovaara J; McElroy MB Environ Sci Technol; 2012 Mar; 46(5):3014-21. PubMed ID: 22321206 [TBL] [Abstract][Full Text] [Related]
12. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective. Steubing B; Zah R; Ludwig C Environ Sci Technol; 2012 Jan; 46(1):164-71. PubMed ID: 22091634 [TBL] [Abstract][Full Text] [Related]
13. Co-combustion of agricultural residues with coal in a fluidized bed combustor. Ghani WA; Alias AB; Savory RM; Cliffe KR Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant. Mylläri F; Pirjola L; Lihavainen H; Asmi E; Saukko E; Laurila T; Vakkari V; O'Connor E; Rautiainen J; Häyrinen A; Niemelä V; Maunula J; Hillamo R; Keskinen J; Rönkkö T J Air Waste Manag Assoc; 2019 Jan; 69(1):97-108. PubMed ID: 30204539 [TBL] [Abstract][Full Text] [Related]
15. Energy recovery from waste incineration: assessing the importance of district heating networks. Fruergaard T; Christensen TH; Astrup T Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481 [TBL] [Abstract][Full Text] [Related]
16. Environmental impact of coal industry and thermal power plants in India. Mishra UC J Environ Radioact; 2004; 72(1-2):35-40. PubMed ID: 15162853 [TBL] [Abstract][Full Text] [Related]
17. Switch: a planning tool for power systems with large shares of intermittent renewable energy. Fripp M Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of energy recovery and CO2 reduction potential in Japan through integrated waste and utility management. Horio M; Shigeto S; Shiga M Waste Manag; 2009 Jul; 29(7):2195-202. PubMed ID: 19272763 [TBL] [Abstract][Full Text] [Related]
19. Shea meal and cotton stalk as potential fuels for co-combustion with coal. Munir S; Nimmo W; Gibbs BM Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598 [TBL] [Abstract][Full Text] [Related]
20. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta. van Kooten GC; Duan J; Lynch R PLoS One; 2016; 11(11):e0165822. PubMed ID: 27902712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]