These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2171928)

  • 1. Heat-shock and related stress enhance RNA polymerase II C-terminal-domain kinase activity in HeLa cell extracts.
    Legagneux V; Morange M; Bensaude O
    Eur J Biochem; 1990 Oct; 193(1):121-6. PubMed ID: 2171928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation state of the RNA polymerase II C-terminal domain (CTD) in heat-shocked cells. Possible involvement of the stress-activated mitogen-activated protein (MAP) kinases.
    Venetianer A; Dubois MF; Nguyen VT; Bellier S; Seo SJ; Bensaude O
    Eur J Biochem; 1995 Oct; 233(1):83-92. PubMed ID: 7588777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II.
    Dubois MF; Vincent M; Vigneron M; Adamczewski J; Egly JM; Bensaude O
    Nucleic Acids Res; 1997 Feb; 25(4):694-700. PubMed ID: 9016617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [IIa/IIo conversion of RNA polymerase II during heat shock].
    Dubois MF; Bensaude O; Morange M
    C R Acad Sci III; 1991; 313(3):165-70. PubMed ID: 1913254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II.
    Dubois MF; Marshall NF; Nguyen VT; Dahmus GK; Bonnet F; Dahmus ME; Bensaude O
    Nucleic Acids Res; 1999 Mar; 27(5):1338-44. PubMed ID: 9973623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different carboxyl-terminal domain kinase activities are induced by heat-shock and arsenite. Characterization of their substrate specificity, separation by Mono Q chromatography, and comparison with the mitogen-activated protein kinases.
    Trigon S; Morange M
    J Biol Chem; 1995 Jun; 270(22):13091-8. PubMed ID: 7768904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II.
    Lee JM; Greenleaf AL
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3624-8. PubMed ID: 2657724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of human CDC2 protein as a histone H1 kinase is associated with complex formation with the p62 subunit.
    Brizuela L; Draetta G; Beach D
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4362-6. PubMed ID: 2543971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I.
    Lee JM; Greenleaf AL
    J Biol Chem; 1997 Apr; 272(17):10990-3. PubMed ID: 9110987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain.
    Herrmann CH; Gold MO; Rice AP
    Nucleic Acids Res; 1996 Feb; 24(3):501-8. PubMed ID: 8602364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2.
    Cisek LJ; Corden JL
    Nature; 1989 Jun; 339(6227):679-84. PubMed ID: 2662013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell division in higher plants: a cdc2 gene, its 34-kDa product, and histone H1 kinase activity in pea.
    Feiler HS; Jacobs TW
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5397-401. PubMed ID: 2164683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of the Ume3p/ Srb11p-RNA polymerase II holoenzyme interaction.
    Cooper KF; Strich R
    Gene Expr; 1999; 8(1):43-57. PubMed ID: 10543730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock-induced alterations in phosphorylation of the largest subunit of RNA polymerase II as revealed by monoclonal antibodies CC-3 and MPM-2.
    Lavoie SB; Albert AL; Thibodeau A; Vincent M
    Biochem Cell Biol; 1999; 77(4):367-74. PubMed ID: 10546900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells.
    Dubois MF; Bellier S; Seo SJ; Bensaude O
    J Cell Physiol; 1994 Mar; 158(3):417-26. PubMed ID: 8126066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits a HeLa protein kinase that phosphorylates an RNA polymerase II-derived peptide.
    Stevens A; Maupin MK
    Biochem Biophys Res Commun; 1989 Mar; 159(2):508-15. PubMed ID: 2930526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation.
    Xiao H; Lis JT; Xiao H; Greenblatt J; Friesen JD
    Nucleic Acids Res; 1994 Jun; 22(11):1966-73. PubMed ID: 8029001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II.
    Comer FI; Hart GW
    Biochemistry; 2001 Jul; 40(26):7845-52. PubMed ID: 11425311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation.
    Palancade B; Bensaude O
    Eur J Biochem; 2003 Oct; 270(19):3859-70. PubMed ID: 14511368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.