These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21719281)

  • 21. Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass.
    Chellapandi P; Prabaharan D; Uma L
    Appl Biochem Biotechnol; 2010 Sep; 162(2):524-35. PubMed ID: 19911119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Greenhouse gas balance for composting operations.
    Brown S; Kruger C; Subler S
    J Environ Qual; 2008; 37(4):1396-410. PubMed ID: 18574171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic pretreatment and increased solid destruction for vegetable solid waste codigested with cattle slurry.
    Mandachittibabu ; Saravanane R; Sivacoumar R
    J Environ Sci Eng; 2009 Jan; 51(1):67-72. PubMed ID: 21114156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology.
    Cakir FY; Stenstrom MK
    Water Res; 2005 Oct; 39(17):4197-203. PubMed ID: 16188289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.
    Budde J; Prochnow A; Plöchl M; Suárez Quiñones T; Heiermann M
    Waste Manag; 2016 Mar; 49():390-410. PubMed ID: 26709050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of food waste as feedstock for anaerobic digestion.
    Zhang R; El-Mashad HM; Hartman K; Wang F; Liu G; Choate C; Gamble P
    Bioresour Technol; 2007 Mar; 98(4):929-35. PubMed ID: 16635571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biogas production from crop residues on a farm-scale level: is it economically feasible under conditions in Sweden?
    Svensson LM; Christensson K; Björnsson L
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):139-48. PubMed ID: 16172872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic co-digestion of surplus yeast and wastewater to increase energy recovery in breweries.
    Neira K; Jeison D
    Water Sci Technol; 2010; 61(5):1129-35. PubMed ID: 20220234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements.
    Zhang L; Lee YW; Jahng D
    Bioresour Technol; 2011 Apr; 102(8):5048-59. PubMed ID: 21349706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.
    Torrijos M; Thalla AK; Sousbie P; Bosque F; Delgenès JP
    Water Sci Technol; 2008; 58(9):1871-8. PubMed ID: 19029731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK.
    Walker M; Theaker H; Yaman R; Poggio D; Nimmo W; Bywater A; Blanch G; Pourkashanian M
    Waste Manag; 2017 Mar; 61():258-268. PubMed ID: 28185851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogas recovery from a temperate climate covered anaerobic pond.
    Heubeck S; Craggs RJ
    Water Sci Technol; 2010; 61(4):1019-26. PubMed ID: 20182082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure.
    Macias-Corral M; Samani Z; Hanson A; Smith G; Funk P; Yu H; Longworth J
    Bioresour Technol; 2008 Nov; 99(17):8288-93. PubMed ID: 18482835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A perspective on methodologies and system boundaries to develop abatement cost for on-farm anaerobic digestion.
    Diaz Huerta J; O'Shea R; Murphy J; Wall DM
    Bioengineered; 2023 Sep; 14(1):2245991. PubMed ID: 37712640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Life-cycle assessment of microalgae culture coupled to biogas production.
    Collet P; Hélias A; Lardon L; Ras M; Goy RA; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):207-14. PubMed ID: 20674343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments.
    Lisboa MS; Lansing S
    Waste Manag; 2013 Dec; 33(12):2664-9. PubMed ID: 24084104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel anaerobic digestion process with sludge ozonation for economically feasible power production from biogas.
    Komatsu K; Yasui H; Goel R; Li YY; Noike T
    Water Sci Technol; 2011; 63(7):1467-75. PubMed ID: 21508552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery.
    Bohutskyi P; Ketter B; Chow S; Adams KJ; Betenbaugh MJ; Allnutt FC; Bouwer EJ
    Bioresour Technol; 2015 May; 183():229-39. PubMed ID: 25746299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.
    Nayal FS; Mammadov A; Ciliz N
    J Environ Manage; 2016 Dec; 184(Pt 2):389-399. PubMed ID: 27742149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production.
    Massé DI; Masse L; Xia Y; Gilbert Y
    J Anim Sci; 2010 Apr; 88(13 Suppl):E112-20. PubMed ID: 19855002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.