BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21719282)

  • 1. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.
    Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides.
    Gu W; Wang T; Maltais F; Ledford B; Kennedy J; Wei Y; Gross CH; Parsons J; Duncan L; Arends SJ; Moody C; Perola E; Green J; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3693-8. PubMed ID: 22560473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetic mechanism of S. pneumoniae DNA ligase and inhibition by adenosine-based antibacterial compounds.
    Jahić H; Liu CF; Thresher J; Livchak S; Wang H; Ehmann DE
    Biochem Pharmacol; 2012 Sep; 84(5):654-60. PubMed ID: 22743594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.
    Stokes SS; Gowravaram M; Huynh H; Lu M; Mullen GB; Chen B; Albert R; O'Shea TJ; Rooney MT; Hu H; Newman JV; Mills SD
    Bioorg Med Chem Lett; 2012 Jan; 22(1):85-9. PubMed ID: 22154350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part 2: 4-amino-pyrido[2,3-d]pyrimidin-5(8H)-ones.
    Wang T; Duncan L; Gu W; O'Dowd H; Wei Y; Perola E; Parsons J; Gross CH; Moody CS; Arends SJ; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3699-703. PubMed ID: 22560470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development.
    Murphy-Benenato KE; Gingipalli L; Boriack-Sjodin PA; Martinez-Botella G; Carcanague D; Eyermann CJ; Gowravaram M; Harang J; Hale MR; Ioannidis G; Jahic H; Johnstone M; Kutschke A; Laganas VA; Loch JT; Miller MD; Oguto H; Patel SJ
    Bioorg Med Chem Lett; 2015 Nov; 25(22):5172-7. PubMed ID: 26463129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase.
    Ronkin SM; Badia M; Bellon S; Grillot AL; Gross CH; Grossman TH; Mani N; Parsons JD; Stamos D; Trudeau M; Wei Y; Charifson PS
    Bioorg Med Chem Lett; 2010 May; 20(9):2828-31. PubMed ID: 20356737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrrolamide DNA gyrase inhibitors: optimization of antibacterial activity and efficacy.
    Sherer BA; Hull K; Green O; Basarab G; Hauck S; Hill P; Loch JT; Mullen G; Bist S; Bryant J; Boriack-Sjodin A; Read J; DeGrace N; Uria-Nickelsen M; Illingworth RN; Eakin AE
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7416-20. PubMed ID: 22041057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4-alkoxy-3-arylfuran-2(5H)-ones as inhibitors of tyrosyl-tRNA synthetase: synthesis, molecular docking and antibacterial evaluation.
    Xiao ZP; Ouyang H; Wang XD; Lv PC; Huang ZJ; Yu SR; Yi TF; Yang YL; Zhu HL
    Bioorg Med Chem; 2011 Jul; 19(13):3884-91. PubMed ID: 21669535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and Topoisomerase IV.
    Manchester JI; Dussault DD; Rose JA; Boriack-Sjodin PA; Uria-Nickelsen M; Ioannidis G; Bist S; Fleming P; Hull KG
    Bioorg Med Chem Lett; 2012 Aug; 22(15):5150-6. PubMed ID: 22814212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases.
    Meier TI; Yan D; Peery RB; McAllister KA; Zook C; Peng SB; Zhao G
    FEBS J; 2008 Nov; 275(21):5258-71. PubMed ID: 18795946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity.
    Surivet JP; Lange R; Hubschwerlen C; Keck W; Specklin JL; Ritz D; Bur D; Locher H; Seiler P; Strasser DS; Prade L; Kohl C; Schmitt C; Chapoux G; Ilhan E; Ekambaram N; Athanasiou A; Knezevic A; Sabato D; Chambovey A; Gaertner M; Enderlin M; Boehme M; Sippel V; Wyss P
    Bioorg Med Chem Lett; 2012 Nov; 22(21):6705-11. PubMed ID: 23006603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo.
    Mills SD; Eakin AE; Buurman ET; Newman JV; Gao N; Huynh H; Johnson KD; Lahiri S; Shapiro AB; Walkup GK; Yang W; Stokes SS
    Antimicrob Agents Chemother; 2011 Mar; 55(3):1088-96. PubMed ID: 21189350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations.
    Murphy-Benenato K; Wang H; McGuire HM; Davis HE; Gao N; Prince DB; Jahic H; Stokes SS; Boriack-Sjodin PA
    Bioorg Med Chem Lett; 2014 Jan; 24(1):360-6. PubMed ID: 24287382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines.
    Li X; Hilgers M; Cunningham M; Chen Z; Trzoss M; Zhang J; Kohnen L; Lam T; Creighton C; G C K; Nelson K; Kwan B; Stidham M; Brown-Driver V; Shaw KJ; Finn J
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5171-6. PubMed ID: 21831637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and Optimization of NAD+-Dependent DNA Ligase Inhibitors as Novel Antibacterial Compounds.
    Bi F; Ma R; Ma S
    Curr Pharm Des; 2017; 23(14):2117-2130. PubMed ID: 27784238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and biological evaluation of N-acylhydrazones as inhibitors of MurC and MurD ligases.
    Sink R; Kovac A; Tomasić T; Rupnik V; Boniface A; Bostock J; Chopra I; Blanot D; Masic LP; Gobec S; Zega A
    ChemMedChem; 2008 Sep; 3(9):1362-70. PubMed ID: 18651694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK.
    Seefeld MA; Miller WH; Newlander KA; Burgess WJ; DeWolf WE; Elkins PA; Head MS; Jakas DR; Janson CA; Keller PM; Manley PJ; Moore TD; Payne DJ; Pearson S; Polizzi BJ; Qiu X; Rittenhouse SF; Uzinskas IN; Wallis NG; Huffman WF
    J Med Chem; 2003 Apr; 46(9):1627-35. PubMed ID: 12699381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine analogs as inhibitors of tyrosyl-tRNA synthetase: Design, synthesis and antibacterial evaluation.
    Wei W; Shi WK; Wang PF; Zeng XT; Li P; Zhang JR; Li Q; Tang ZP; Peng J; Wu LZ; Xie MQ; Liu C; Li XH; Wang YC; Xiao ZP; Zhu HL
    Bioorg Med Chem; 2015 Oct; 23(20):6602-11. PubMed ID: 26404408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold.
    Hrast M; Anderluh M; Knez D; Randall CP; Barreteau H; O'Neill AJ; Blanot D; Gobec S
    Eur J Med Chem; 2014 Feb; 73():83-96. PubMed ID: 24384549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.