These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Wilden U Biochemistry; 1995 Jan; 34(4):1446-54. PubMed ID: 7827093 [TBL] [Abstract][Full Text] [Related]
8. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity. Wagner R; Ryba N; Uhl R FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032 [TBL] [Abstract][Full Text] [Related]
9. Ca2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin. Huppertz B; Weyand I; Bauer PJ J Biol Chem; 1990 Jun; 265(16):9470-5. PubMed ID: 2160981 [TBL] [Abstract][Full Text] [Related]
10. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Wilden U; Hall SW; Kühn H Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038 [TBL] [Abstract][Full Text] [Related]
11. Binding of GTP to transducin is not inhibited by arrestin and phosphorylated rhodopsin. Fukada Y; Yoshizawa T; Saito T; Ohguro H; Akino T FEBS Lett; 1990 Feb; 261(2):419-22. PubMed ID: 2311767 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967 [TBL] [Abstract][Full Text] [Related]
13. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. Palczewski K; Buczyłko J; Imami NR; McDowell JH; Hargrave PA J Biol Chem; 1991 Aug; 266(23):15334-9. PubMed ID: 1651326 [TBL] [Abstract][Full Text] [Related]
14. Control of rhodopsin multiple phosphorylation. Ohguro H; Johnson RS; Ericsson LH; Walsh KA; Palczewski K Biochemistry; 1994 Feb; 33(4):1023-8. PubMed ID: 8305429 [TBL] [Abstract][Full Text] [Related]
15. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Pfister C; Chabre M; Plouet J; Tuyen VV; De Kozak Y; Faure JP; Kühn H Science; 1985 May; 228(4701):891-3. PubMed ID: 2988124 [TBL] [Abstract][Full Text] [Related]
16. Arrestin from nucleated red blood cells binds to bovine rhodopsin in a light-dependent manner. Scheuring U; Franco M; Fievet B; Guizouarn H; Mirshahi M; Faure JP; Motais R FEBS Lett; 1990 Dec; 276(1-2):192-6. PubMed ID: 2265700 [TBL] [Abstract][Full Text] [Related]
17. Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts. Perdomo D; Bubis J Biochimie; 2020 Oct; 177():1-12. PubMed ID: 32758687 [TBL] [Abstract][Full Text] [Related]
18. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin. McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044 [TBL] [Abstract][Full Text] [Related]
19. Regulation of rhodopsin kinase by autophosphorylation. Buczyłko J; Gutmann C; Palczewski K Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2568-72. PubMed ID: 2006192 [TBL] [Abstract][Full Text] [Related]
20. Adaptive changes in visual cell transduction protein levels: effect of light. Organisciak DT; Xie A; Wang HM; Jiang YL; Darrow RM; Donoso LA Exp Eye Res; 1991 Dec; 53(6):773-9. PubMed ID: 1783015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]