BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 21719692)

  • 41. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
    Candela H; Johnston R; Gerhold A; Foster T; Hake S
    Plant Cell; 2008 Aug; 20(8):2073-87. PubMed ID: 18757553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Palmate-like pentafoliata1 encodes a novel Cys(2)His(2) zinc finger transcription factor essential for compound leaf morphogenesis in Medicago truncatula.
    Ge L; Chen J; Chen R
    Plant Signal Behav; 2010 Sep; 5(9):1134-7. PubMed ID: 20724826
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108.
    Lauressergues D; André O; Peng J; Wen J; Chen R; Ratet P; Tadege M; Mysore KS; Rochange SF
    J Exp Bot; 2015 Mar; 66(5):1237-44. PubMed ID: 25472976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of compound leaf development in Medicago truncatula by fused compound leaf1, a class M KNOX gene.
    Peng J; Yu J; Wang H; Guo Y; Li G; Bai G; Chen R
    Plant Cell; 2011 Nov; 23(11):3929-43. PubMed ID: 22080596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Role for Auxin in Triggering Lamina Outgrowth of Unifacial Leaves.
    Nukazuka A; Yamaguchi T; Tsukaya H
    Plant Physiol; 2021 Jun; 186(2):1013-1024. PubMed ID: 33620494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning and functional characterization of epidermis-specific promoter MtML1 from Medicago truncatula.
    Gao L; Tian Y; Chen MC; Wei L; Gao TG; Yin HJ; Zhang JL; Kumar T; Liu LB; Wang SM
    J Biotechnol; 2019 Jul; 300():32-39. PubMed ID: 31085201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of Class Ⅱ KNOX family in controlling compound leaf patterning in Medicago truncatula.
    Wang X; Zhang J; Chai M; Han L; Cao X; Zhang J; Kong Y; Fu C; Wang ZY; Mysore KS; Wen J; Zhou C
    J Integr Plant Biol; 2023 Oct; 65(10):2279-2291. PubMed ID: 37526388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana.
    Lin YT; Wei HM; Lu HY; Lee YI; Fu SF
    Plant Cell Physiol; 2015 Jun; 56(6):1124-43. PubMed ID: 25745030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth.
    Kuluev B; Avalbaev A; Nurgaleeva E; Knyazev A; Nikonorov Y; Chemeris A
    J Plant Physiol; 2015 Sep; 189():11-23. PubMed ID: 26479044
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.
    Guan C; Wu B; Yu T; Wang Q; Krogan NT; Liu X; Jiao Y
    Curr Biol; 2017 Oct; 27(19):2940-2950.e4. PubMed ID: 28943086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors.
    Ha CM; Jun JH; Fletcher JC
    Genetics; 2010 Sep; 186(1):197-206. PubMed ID: 20610407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LAM1 is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana.
    McHale NA; Marcotrigiano M
    Development; 1998 Nov; 125(21):4235-43. PubMed ID: 9753678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant homeodomain proteins provide a mechanism for how leaves grow wide.
    Conklin PA; Johnston R; Conlon BR; Shimizu R; Scanlon MJ
    Development; 2020 Oct; 147(20):. PubMed ID: 32994171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview.
    Chen R
    Methods Mol Biol; 2018; 1822():197-203. PubMed ID: 30043306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis.
    Nakata M; Matsumoto N; Tsugeki R; Rikirsch E; Laux T; Okada K
    Plant Cell; 2012 Feb; 24(2):519-35. PubMed ID: 22374393
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development.
    Schneeberger R; Tsiantis M; Freeling M; Langdale JA
    Development; 1998 Aug; 125(15):2857-65. PubMed ID: 9655808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula.
    Ge L; Chen R
    Plant Signal Behav; 2014; 9(3):e28121. PubMed ID: 24603499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes.
    Benlloch R; d'Erfurth I; Ferrandiz C; Cosson V; Beltrán JP; Cañas LA; Kondorosi A; Madueño F; Ratet P
    Plant Physiol; 2006 Nov; 142(3):972-83. PubMed ID: 16963524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphogenesis of simple and compound leaves: a critical review.
    Efroni I; Eshed Y; Lifschitz E
    Plant Cell; 2010 Apr; 22(4):1019-32. PubMed ID: 20435903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.