These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21719731)
1. β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger. Vitiello D; Boissière J; Doucende G; Gayrard S; Polge A; Faure P; Goux A; Tanguy S; Obert P; Reboul C; Nottin S J Appl Physiol (1985); 2011 Nov; 111(5):1242-8. PubMed ID: 21719731 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Qin F; Simeone M; Patel R Free Radic Biol Med; 2007 Jul; 43(2):271-81. PubMed ID: 17603936 [TBL] [Abstract][Full Text] [Related]
3. Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2; The role of NADPH oxidase 4. Theccanat T; Philip JL; Razzaque AM; Ludmer N; Li J; Xu X; Akhter SA Cell Signal; 2016 Mar; 28(3):190-203. PubMed ID: 26631573 [TBL] [Abstract][Full Text] [Related]
4. NADPH oxidase contributes to the left ventricular dysfunction induced by sinoaortic denervation in rats. Zhang L; Li F; Zhi G; Zhang B; Chen YD Free Radic Res; 2015 Jan; 49(1):57-66. PubMed ID: 25356862 [TBL] [Abstract][Full Text] [Related]
5. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Leosco D; Rengo G; Iaccarino G; Golino L; Marchese M; Fortunato F; Zincarelli C; Sanzari E; Ciccarelli M; Galasso G; Altobelli GG; Conti V; Matrone G; Cimini V; Ferrara N; Filippelli A; Koch WJ; Rengo F Cardiovasc Res; 2008 May; 78(2):385-94. PubMed ID: 18093988 [TBL] [Abstract][Full Text] [Related]
6. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Gimenes R; Gimenes C; Rosa CM; Xavier NP; Campos DHS; Fernandes AAH; Cezar MDM; Guirado GN; Pagan LU; Chaer ID; Fernandes DC; Laurindo FR; Cicogna AC; Okoshi MP; Okoshi K Cardiovasc Diabetol; 2018 Jan; 17(1):15. PubMed ID: 29343259 [TBL] [Abstract][Full Text] [Related]
7. [Oxidative stress and calcium/calmodulin-dependent protein kinase II contribute to the development of sustained β adrenergic receptor-stimulated cardiac hypertrophy in rats]. Liu YL; Liu B; Qu YY; Chai HJ; Li R; Zhang L Sheng Li Xue Bao; 2013 Feb; 65(1):1-7. PubMed ID: 23426507 [TBL] [Abstract][Full Text] [Related]
8. Temporal changes in myocardial adrenergic regulation with the progression to pump dysfunction after chronic beta-adrenoreceptor activation in rats. Osadchii OE; Woodiwiss AJ; Deftereos D; Norton GR Pflugers Arch; 2007 Nov; 455(2):251-60. PubMed ID: 17558518 [TBL] [Abstract][Full Text] [Related]
9. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. Isabelle M; Vergeade A; Moritz F; Dautréaux B; Henry JP; Lallemand F; Richard V; Mulder P; Thuillez C; Monteil C J Mol Cell Cardiol; 2007 Feb; 42(2):326-32. PubMed ID: 17217956 [TBL] [Abstract][Full Text] [Related]
10. Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Bendall JK; Damy T; Ratajczak P; Loyer X; Monceau V; Marty I; Milliez P; Robidel E; Marotte F; Samuel JL; Heymes C Circulation; 2004 Oct; 110(16):2368-75. PubMed ID: 15466641 [TBL] [Abstract][Full Text] [Related]
11. Additive amelioration of oxidative stress and cardiac function by combined mineralocorticoid and angiotensin receptor blockers in postinfarct failing hearts. Noda K; Kobara M; Hamada J; Yoshifuji Y; Shiraishi T; Tanaka T; Wang J; Toba H; Nakata T J Cardiovasc Pharmacol; 2012 Aug; 60(2):140-9. PubMed ID: 22549451 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Tanriverdi LH; Parlakpinar H; Ozhan O; Ermis N; Polat A; Vardi N; Tanbek K; Yildiz A; Acet A Free Radic Res; 2017 Oct; 51(9-10):772-786. PubMed ID: 28969461 [TBL] [Abstract][Full Text] [Related]
13. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. Zhang GX; Ohmori K; Nagai Y; Fujisawa Y; Nishiyama A; Abe Y; Kimura S J Mol Cell Cardiol; 2007 Apr; 42(4):804-11. PubMed ID: 17350036 [TBL] [Abstract][Full Text] [Related]
14. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise? da Silva MF; Natali AJ; da Silva E; Gomes GJ; Teodoro BG; Cunha DN; Drummond LR; Drummond FR; Moura AG; Belfort FG; de Oliveira A; Maldonado IR; Alberici LC J Appl Physiol (1985); 2015 Jul; 119(2):148-56. PubMed ID: 25997948 [TBL] [Abstract][Full Text] [Related]
15. Effect of ginsenoside Rh1 on myocardial injury and heart function in isoproterenol-induced cardiotoxicity in rats. Gai Y; Ma Z; Yu X; Qu S; Sui D Toxicol Mech Methods; 2012 Oct; 22(8):584-91. PubMed ID: 22694660 [TBL] [Abstract][Full Text] [Related]
16. [Association between beta3-adrenergic receptor and oxidative stress in chronic heart failure rats]. Kong YH; Zhang Y; Li N; Zhang L; Gao YH; Xue HJ; Li Y; Li WM Zhonghua Xin Xue Guan Bing Za Zhi; 2010 May; 38(5):435-9. PubMed ID: 20654104 [TBL] [Abstract][Full Text] [Related]