These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21720631)

  • 41. Bioinspired peptide nanostructures for organic field-effect transistors.
    Cipriano T; Knotts G; Laudari A; Bianchi RC; Alves WA; Guha S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21408-15. PubMed ID: 25376495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diphenylalanine peptide nanotubes self-assembled on functionalized metal surfaces for potential application in drug-eluting stent.
    Zohrabi T; Habibi N; Zarrabi A; Fanaei M; Lee LY
    J Biomed Mater Res A; 2016 Sep; 104(9):2280-90. PubMed ID: 27119433
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry.
    Kammeijer GSM; Jansen BC; Kohler I; Heemskerk AAM; Mayboroda OA; Hensbergen PJ; Schappler J; Wuhrer M
    Sci Rep; 2017 Jun; 7(1):3733. PubMed ID: 28623326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers.
    Wang Y; Huang R; Qi W; Wu Z; Su R; He Z
    Nanotechnology; 2013 Nov; 24(46):465603. PubMed ID: 24157576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple integrated system for rapid analysis of sialic-acid-containing N-glycopeptides from human serum.
    Zhu J; Wang F; Cheng K; Dong J; Sun D; Chen R; Wang L; Ye M; Zou H
    Proteomics; 2013 Apr; 13(8):1306-13. PubMed ID: 23335361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vertically aligned peptide nanostructures using plasma-enhanced chemical vapor deposition.
    Vasudev MC; Koerner H; Singh KM; Partlow BP; Kaplan DL; Gazit E; Bunning TJ; Naik RR
    Biomacromolecules; 2014 Feb; 15(2):533-40. PubMed ID: 24400716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.
    Han TH; Oh JK; Lee GJ; Pyun SI; Kim SO
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):440-5. PubMed ID: 20605423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Picosecond melting of peptide nanotubes using an infrared laser: a nonequilibrium simulation study.
    Hoang Viet M; Truong PM; Derreumaux P; Li MS; Roland C; Sagui C; Nguyen PH
    Phys Chem Chem Phys; 2015 Nov; 17(41):27275-80. PubMed ID: 26437688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed Self-Assembly of Dipeptide Single Crystal in a Capillary.
    Sun B; Riegler H; Dai L; Eickelmann S; Li Y; Li G; Yang Y; Li Q; Fu M; Fei J; Li J
    ACS Nano; 2018 Feb; 12(2):1934-1939. PubMed ID: 29337528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes.
    Gan Z; Wu X; Zhu X; Shen J
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):2055-9. PubMed ID: 23307702
    [No Abstract]   [Full Text] [Related]  

  • 55. A new strategy for stereoselective synthesis of sialic acid-containing glycopeptide fragment.
    Wang ZG; Zhang XF; Ito Y; Nakahara Y; Ogawa T
    Bioorg Med Chem; 1996 Nov; 4(11):1901-8. PubMed ID: 9007274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines.
    Datta D; Tiwari O; Ganesh KN
    Nanoscale; 2018 Feb; 10(7):3212-3224. PubMed ID: 29379926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry.
    Hinneburg H; Hofmann J; Struwe WB; Thader A; Altmann F; Varón Silva D; Seeberger PH; Pagel K; Kolarich D
    Chem Commun (Camb); 2016 Mar; 52(23):4381-4. PubMed ID: 26926577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.
    Reches M; Gazit E
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2239-45. PubMed ID: 17663236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specific extraction of sialic-acid-containing glycans and glycopeptides using serotonin-bonded silica.
    Yodoshi M; Ikuta T; Mouri Y; Suzuki S
    Anal Sci; 2010 Jan; 26(1):75-81. PubMed ID: 20065591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides.
    Higashi SL; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    Chemistry; 2019 Sep; 25(51):11955-11962. PubMed ID: 31268200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.