These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21720631)

  • 61. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.
    Mayans E; Ballano G; Sendros J; Font-Bardia M; Campos JL; Puiggalí J; Cativiela C; Alemán C
    Chemphyschem; 2017 Jul; 18(14):1888-1896. PubMed ID: 28374964
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Direct observation of the release of phenylalanine from diphenylalanine nanotubes.
    Sedman VL; Adler-Abramovich L; Allen S; Gazit E; Tendler SJ
    J Am Chem Soc; 2006 May; 128(21):6903-8. PubMed ID: 16719470
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly.
    Ji W; Tang Y; Makam P; Yao Y; Jiao R; Cai K; Wei G; Gazit E
    J Am Chem Soc; 2021 Oct; 143(42):17633-17645. PubMed ID: 34647727
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mass spectrometry methods for studying glycosylation in cancer.
    Osório H; Reis CA
    Methods Mol Biol; 2013; 1007():301-16. PubMed ID: 23666732
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of replacing phenylalanine residues by para-substituted phenylalanines on the aggregation behavior of aβ16-22.
    Sivakamasundari C; Nandakumar S; Nagaraj R
    Protein Pept Lett; 2012 May; 19(5):551-8. PubMed ID: 21933114
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of self-assembled nanostructures for intracellular drug delivery from diphenylalanine analogues with rigid or flexible chemical linkers.
    Arul A; Rana P; Das K; Pan I; Mandal D; Stewart A; Maity B; Ghosh S; Das P
    Nanoscale Adv; 2021 Oct; 3(21):6176-6190. PubMed ID: 36133937
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation.
    Bonduelle C; Mazzaferro S; Huang J; Lambert O; Heise A; Lecommandoux S
    Faraday Discuss; 2013; 166():137-50. PubMed ID: 24611273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of water in directing diphenylalanine assembly into nanotubes and nanowires.
    Kim J; Han TH; Kim YI; Park JS; Choi J; Churchill DG; Kim SO; Ihee H
    Adv Mater; 2010 Feb; 22(5):583-7. PubMed ID: 20217753
    [No Abstract]   [Full Text] [Related]  

  • 71. Capillarity induced large area patterning of peptide nanowires.
    Park JS; Han TH; Oh JK; Kim SO
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6954-7. PubMed ID: 21137832
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Controlling morphology of peptide-based soft structures by covalent modifications.
    Gour N; Barman AK; Verma S
    J Pept Sci; 2012 Jun; 18(6):405-12. PubMed ID: 22535547
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides.
    Gallagher JT; Morris A; Dexter TM
    Biochem J; 1985 Oct; 231(1):115-22. PubMed ID: 3840682
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient synthesis of S-linked glycopeptides in aqueous solution by a convergent strategy.
    Zhu X; Schmidt RR
    Chemistry; 2004 Feb; 10(4):875-87. PubMed ID: 14978813
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis.
    Kim JH; Lee M; Lee JS; Park CB
    Angew Chem Int Ed Engl; 2012 Jan; 51(2):517-20. PubMed ID: 21976303
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strong piezoelectricity in bioinspired peptide nanotubes.
    Kholkin A; Amdursky N; Bdikin I; Gazit E; Rosenman G
    ACS Nano; 2010 Feb; 4(2):610-4. PubMed ID: 20131852
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-assembly: a minimalist route to the fabrication of nanomaterials.
    Lazzari M; Rodríguez-Abreu C; Rivas J; López-Quintela MA
    J Nanosci Nanotechnol; 2006 Apr; 6(4):892-905. PubMed ID: 16736746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Posttranslationally modified peptides efficiently mimicking neoantigens: a challenge for theragnostics of autoimmune diseases.
    Nuti F; Peroni E; Real-Fernández F; Bonache MA; Le Chevalier-Isaad A; Chelli M; Lubin-Germain N; Uziel J; Rovero P; Lolli F; Papini AM
    Biopolymers; 2010; 94(6):791-9. PubMed ID: 20564034
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sodium chloride's effect on self-assembly of diphenylalanine bilayer.
    Kwon J; Lee M; Na S
    J Comput Chem; 2016 Jul; 37(19):1839-46. PubMed ID: 27241039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.