BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21720760)

  • 1. Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.).
    Gu H; Jia Y; Wang X; Chen Q; Shi S; Ma L; Zhang J; Zhang H; Ma H
    Mol Biol Rep; 2012 Apr; 39(4):3565-72. PubMed ID: 21720760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally- and stress-regulated.
    Peng H; Cheng HY; Yu XW; Shi QH; Zhang H; Li JG; Ma H
    Plant Physiol Biochem; 2009; 47(11-12):1037-45. PubMed ID: 19800808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.).
    Peng H; Yu X; Cheng H; Shi Q; Zhang H; Li J; Ma H
    Mol Biotechnol; 2010 Jan; 44(1):30-40. PubMed ID: 19669952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.).
    Jia Y; Gu H; Wang X; Chen Q; Shi S; Zhang J; Ma L; Zhang H; Ma H
    Mol Biol Rep; 2012 Mar; 39(3):2337-45. PubMed ID: 21667242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.
    Deokar AA; Kondawar V; Kohli D; Aslam M; Jain PK; Karuppayil SM; Varshney RK; Srinivasan R
    Funct Integr Genomics; 2015 Jan; 15(1):27-46. PubMed ID: 25274312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes.
    Peng H; Cheng HY; Chen C; Yu XW; Yang JN; Gao WR; Shi QH; Zhang H; Li JG; Ma H
    J Plant Physiol; 2009 Nov; 166(17):1934-45. PubMed ID: 19595478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.).
    Peng H; Cheng H; Yu X; Shi Q; Zhang H; Li J; Ma H
    Mol Biol Rep; 2010 Feb; 37(2):1081-8. PubMed ID: 19777370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).
    Satheesh V; Chidambaranathan P; Jagannadham PT; Kumar V; Jain PK; Chinnusamy V; Bhat SR; Srinivasan R
    Plant Signal Behav; 2016; 11(2):e992698. PubMed ID: 26445326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum).
    Sagar S; Biswas DK; Singh A
    Gene; 2020 Aug; 753():144797. PubMed ID: 32454180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.).
    Sachdeva S; Bharadwaj C; Singh RK; Jain PK; Patil BS; Roorkiwal M; Varshney R
    PLoS One; 2020; 15(7):e0234550. PubMed ID: 32663226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis.
    Yu X; Liu Y; Wang S; Tao Y; Wang Z; Shu Y; Peng H; Mijiti A; Wang Z; Zhang H; Ma H
    Plant Cell Rep; 2016 Mar; 35(3):613-27. PubMed ID: 26650836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.).
    Singh S; Praveen A; Bhadrecha P
    Protoplasma; 2024 Jul; 261(4):799-818. PubMed ID: 38378886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification, structure analysis and expression profiling of phospholipases D under hormone and abiotic stress treatment in chickpea (Cicer arietinum).
    Sagar S; Deepika ; Biswas DK; Chandrasekar R; Singh A
    Int J Biol Macromol; 2021 Feb; 169():264-273. PubMed ID: 33338528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.
    Verma P; Kaur H; Petla BP; Rao V; Saxena SC; Majee M
    Plant Physiol; 2013 Mar; 161(3):1141-57. PubMed ID: 23284083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining
    Muvunyi BP; Yan Q; Wu F; Min X; Yan ZZ; Kanzana G; Wang Y; Zhang J
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30388835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress.
    Ghangal R; Rajkumar MS; Garg R; Jain M
    Mol Biol Rep; 2020 Apr; 47(4):2749-2761. PubMed ID: 32185688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).
    Pradhan S; Kant C; Verma S; Bhatia S
    PLoS One; 2017; 12(7):e0180469. PubMed ID: 28704400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses.
    Xia N; Zhang G; Liu XY; Deng L; Cai GL; Zhang Y; Wang XJ; Zhao J; Huang LL; Kang ZS
    Mol Biol Rep; 2010 Dec; 37(8):3703-12. PubMed ID: 20213512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set.
    Pang J; Turner NC; Khan T; Du YL; Xiong JL; Colmer TD; Devilla R; Stefanova K; Siddique KHM
    J Exp Bot; 2017 Apr; 68(8):1973-1985. PubMed ID: 27099375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of duplicated and stress-inducible Aox2b gene co-expressed with Aox1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes.
    Cavalcanti JH; Oliveira GM; Saraiva KD; Torquato JP; Maia IG; de Melo DF; Costa JH
    J Plant Physiol; 2013 Dec; 170(18):1609-19. PubMed ID: 23891563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.