These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21720780)

  • 1. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy.
    Bakht MK; Sadeghi M
    Ann Nucl Med; 2011 Oct; 25(8):529-35. PubMed ID: 21720780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dosimetric characterization of 142Pr glass seeds for brachytherapy.
    Jung JW; Reece WD
    Appl Radiat Isot; 2008 Apr; 66(4):441-9. PubMed ID: 18171619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations and radiation dosimetry measurements of 142Pr capillary tube-based radioactive implant (CTRI): a new structure for brachytherapy sources.
    Bakht MK; Sadeghi M; Ahmadi SJ; Haddadi A; Sadjadi SS; Tenreiro C
    Ann Nucl Med; 2013 Apr; 27(3):253-60. PubMed ID: 23381937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Praseodymium-142 microspheres for brachytherapy of nonresectable hepatic tumors.
    Ferreira MC; Podder TK; Rasmussen KH; Jung JW
    Brachytherapy; 2013; 12(6):654-64. PubMed ID: 23932835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose calculation of 142Pr microspheres as a potential treatment for arteriovenous malformations.
    Lee SW; Reece WD
    Phys Med Biol; 2005 Jan; 50(1):151-66. PubMed ID: 15715429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of radioactive praseodymium oxide as a multifunctional agent in nuclear medicine: expanding the horizons of cancer therapy using nanosized neodymium oxide.
    Bakht MK; Sadeghi M; Ahmadi SJ; Sadjadi SS; Tenreiro C
    Nucl Med Commun; 2013 Jan; 34(1):5-12. PubMed ID: 23104000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production.
    Uusijärvi H; Bernhardt P; Rösch F; Maecke HR; Forssell-Aronsson E
    J Nucl Med; 2006 May; 47(5):807-14. PubMed ID: 16644751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bremsstrahlung parameters of praseodymium-142 in different human tissues: a dosimetric perspective for (142)Pr radionuclide therapy.
    Bakht MK; Jabal-Ameli H; Ahmadi SJ; Sadeghi M; Sadjadi S; Tenreiro C
    Ann Nucl Med; 2012 Jun; 26(5):412-8. PubMed ID: 22528970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of high-dose rate prostate brachytherapy dose distributions with iridium-192, ytterbium-169, and thulium-170 sources.
    Krishnamurthy D; Weinberg V; Cunha JA; Hsu IC; Pouliot J
    Brachytherapy; 2011; 10(6):461-5. PubMed ID: 21397569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Use of radionuclides in therapy].
    Vucina J; Han R
    Med Pregl; 2001; 54(5-6):245-50. PubMed ID: 11759220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of doses to personnel and patients during endovascular brachytherapy applications.
    Kirisits C; Hefner A; Wexberg P; Pokrajac B; Glogar D; Pötter R; Georg D
    Radiat Prot Dosimetry; 2004; 108(3):237-45. PubMed ID: 15031445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation safety aspects of brachytherapy for prostate cancer using permanently implanted sources. A report of ICRP Publication 98.
    International Commission on Radiological Protection
    Ann ICRP; 2005; 35(3):iii-vi, 3-50. PubMed ID: 16330284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross section measurements of the (131)Xe(p,n) reaction for production of the therapeutic radionuclide (131)Cs.
    Tárkányi F; Hermanne A; Takács S; Rebeles RA; Van den Winkel P; Király B; Ditrói F; Ignatyuk AV
    Appl Radiat Isot; 2009 Oct; 67(10):1751-7. PubMed ID: 19520583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-section measurement of the 169 Tm p,n reaction for the production of the therapeutic radionuclide 169 Yb and comparison with its reactor-based generation.
    Spahn I; Takács S; Shubin YN; Tárkányi F; Coenen HH; Qaim SM
    Appl Radiat Isot; 2005 Aug; 63(2):235-9. PubMed ID: 15919210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Brachytherapy for prostate cancer: high dose rate or low-dose rate?].
    Cosset JM; Haie-Meder C
    Cancer Radiother; 2005 Dec; 9(8):610-9. PubMed ID: 16226473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostate high-dose-rate brachytherapy as salvage treatment of local failure after previous external or permanent seed irradiation for prostate cancer.
    Tharp M; Hardacre M; Bennett R; Jones WT; Stuhldreher D; Vaught J
    Brachytherapy; 2008; 7(3):231-6. PubMed ID: 18579446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-clinical experience with Re-188-RC-160, a radiolabeled somatostatin analog for use in peptide-targeted radiotherapy.
    Zamora PO; Bender H; Gulhke S; Marek MJ; Knapp FF; Rhodes BA; Biersack HJ
    Anticancer Res; 1997; 17(3B):1803-8. PubMed ID: 9179237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin.
    Moustapha ME; Ehrhardt GJ; Smith CJ; Szajek LP; Eckelman WC; Jurisson SS
    Nucl Med Biol; 2006 Jan; 33(1):81-9. PubMed ID: 16459262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of the Auger emitter 119Sb for targeted radionuclide therapy using a small PET-cyclotron.
    Thisgaard H; Jensen M
    Appl Radiat Isot; 2009 Jan; 67(1):34-8. PubMed ID: 18990581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the development of ¹⁶⁹Yb-brachytherapy seeds: New generation brachytherapy sources for the management of cancer.
    Saxena SK; Kumar Y; Jagadeesan KC; Nuwad J; Bamankar YR; Dash A
    Appl Radiat Isot; 2015 Jul; 101():75-82. PubMed ID: 25846454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.