BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21720846)

  • 1. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4.
    Agrawal M; Chen RR
    Biotechnol Lett; 2011 Nov; 33(11):2127-33. PubMed ID: 21720846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations.
    Agrawal M; Wang Y; Chen RR
    Biotechnol Lett; 2012 Oct; 34(10):1825-32. PubMed ID: 22669340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain.
    Agrawal M; Mao Z; Chen RR
    Biotechnol Bioeng; 2011 Apr; 108(4):777-85. PubMed ID: 21404252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.
    Zhang X; Chen G; Liu W
    FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis.
    Jeon YJ; Svenson CJ; Rogers PL
    FEMS Microbiol Lett; 2005 Mar; 244(1):85-92. PubMed ID: 15727825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis.
    Dunn KL; Rao CV
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.
    Wiebe MG; Nygård Y; Oja M; Andberg M; Ruohonen L; Koivula A; Penttilä M; Toivari M
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9439-47. PubMed ID: 26264136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures.
    Gao Q; Zhang M; McMillan JD; Kompala DS
    Appl Biochem Biotechnol; 2002; 98-100():341-55. PubMed ID: 12018261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis.
    Dunn KL; Rao CV
    Biotechnol Bioeng; 2015 Nov; 112(11):2228-40. PubMed ID: 25943255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions.
    Ma Y; Dong H; Zou S; Hong J; Zhang M
    Biotechnol Lett; 2012 Jul; 34(7):1297-304. PubMed ID: 22421973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Evaluation on glucose-xylose co-fermentation by a recombinant Zymomonas mobilis strain].
    Feng Q; Li S; Wang L; Li T
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):37-47. PubMed ID: 22667107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5).
    Kim IS; Barrow KD; Rogers PL
    Appl Environ Microbiol; 2000 Jan; 66(1):186-93. PubMed ID: 10618222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations.
    Xiong M; Chen G; Barford J
    Bioresour Technol; 2011 Oct; 102(19):9206-15. PubMed ID: 21831633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.