These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21721326)

  • 1. Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering.
    Eugene WW; Gupta M
    J Microw Power Electromagn Energy; 2010; 44(1):14-27. PubMed ID: 21721326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.
    Čapek J; Vojtěch D
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():21-8. PubMed ID: 24411347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave sintering process model.
    Peng H; Tinga WR; Sundararaj U; Eadie RL
    J Microw Power Electromagn Energy; 2003; 38(4):243-58. PubMed ID: 15323110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Microwave and Conventional Modes of Heating on Sintering Behavior, Microstructural Evolution and Mechanical Properties of Al-Cu-Mn Alloys.
    Muthuchamy A; Srikanth M; Agrawal DK; Annamalai AR
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of hierarchical magnesium composites using hybrid microwave sintering.
    Habibi MK; Joshi SP; Gupta M
    J Microw Power Electromagn Energy; 2011; 45(3):112-20. PubMed ID: 24427874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method.
    Seetharaman S; Subramanian J; Tun KS; Hamouda AS; Gupta M
    Materials (Basel); 2013 May; 6(5):1940-1955. PubMed ID: 28809252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructures and Properties of Cu-rGO Composites Prepared by Microwave Sintering.
    Chen X; Zhao L; Jiang L; Wang H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity Analysis of Reinforced Aluminum Based Metal Matrix Composites.
    Gillani F; Khan MZ; Shah OR
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of alumina contents on phase stability and mechanical properties of magnesium fluorapatite/alumina composites.
    Hejazi MS; Ahmadian M; Meratian M; Fathi MH
    J Mech Behav Biomed Mater; 2014 Dec; 40():95-101. PubMed ID: 25218990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Novel Lightweight Metastable Metal-(Metal + Ceramic) Composites Using a New Powder Metallurgy Approach.
    Tun KS; Padnuru Sripathy A; Tekumalla S; Gupta M
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32718023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave sintering of W-18Cu and W-7Ni-3Cu alloys.
    Mondal A; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2009; 43(1):11-6. PubMed ID: 21384717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved dispersion of SiC whisker in nano hydroxyapatite and effect of atmospheres on sintering of the SiC whisker reinforced nano hydroxyapatite composites.
    Zhao X; Yang J; Xin H; Wang X; Zhang L; He F; Liu Q; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():135-145. PubMed ID: 30033240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Sintering of SiAlON Ceramics with TiN Addition.
    Sevgi Canarslan Ö; Rosa R; Köroğlu L; Ayas E; Kara A; Veronesi P
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31027167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of MWCNT Particles-Reinforced Magnesium Composite for Mechanical and Catalytic Applications.
    Sathish T; Mohanavel V; Velmurugan P; Alfarraj S; Al Obaid S; Sureshkumar S; Joshua Ramesh Lalvani JI
    Bioinorg Chem Appl; 2022; 2022():7773185. PubMed ID: 35655859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys.
    Mondal A; Agrawal D; Upadhyaya A
    J Microw Power Electromagn Energy; 2010; 44(1):28-44. PubMed ID: 21721327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].
    Chen YF; Lu DM; Wan QB; Jin Y; Zhu JM
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2006 Feb; 24(1):73-6. PubMed ID: 16541664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
    Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave heating of pure copper powder with varying particle size and porosity.
    Mondal A; Agrawal D; Upadhyaya A
    J Microw Power Electromagn Energy; 2009; 43(1):5-10. PubMed ID: 21384716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TLM simulation of microwave sintering of ceramics using SiC stimulus.
    Amri A; Saidane A
    J Microw Power Electromagn Energy; 2001; 36(2):89-100. PubMed ID: 15040527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave sintered nanocomposite electrodes for solid oxide fuel cells.
    Raza R; Zhu B
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5450-4. PubMed ID: 21770204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.