These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate. Lee AK; Zhao R; Li R; Liggio J; Li SM; Abbatt JP Environ Sci Technol; 2013 Nov; 47(22):12819-26. PubMed ID: 24156773 [TBL] [Abstract][Full Text] [Related]
3. Computational study of the effect of glyoxal-sulfate clustering on the Henry's law coefficient of glyoxal. Kurtén T; Elm J; Prisle NL; Mikkelsen KV; Kampf CJ; Waxman EM; Volkamer R J Phys Chem A; 2015 May; 119(19):4509-14. PubMed ID: 25408201 [TBL] [Abstract][Full Text] [Related]
4. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)). Nozière B; Dziedzic P; Córdova A J Phys Chem A; 2009 Jan; 113(1):231-7. PubMed ID: 19118483 [TBL] [Abstract][Full Text] [Related]
5. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution. Drozd GT; McNeill VF Environ Sci Process Impacts; 2014 Apr; 16(4):741-7. PubMed ID: 24356644 [TBL] [Abstract][Full Text] [Related]
7. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate. Powelson MH; Espelien BM; Hawkins LN; Galloway MM; De Haan DO Environ Sci Technol; 2014 Jan; 48(2):985-93. PubMed ID: 24351110 [TBL] [Abstract][Full Text] [Related]
8. Role of interfacial water in the heterogeneous uptake of glyoxal by mixed glycine and ammonium sulfate aerosols. Trainic M; Riziq AA; Lavi A; Rudich Y J Phys Chem A; 2012 Jun; 116(24):5948-57. PubMed ID: 22289141 [TBL] [Abstract][Full Text] [Related]
9. Online and offline mass spectrometric study of the impact of oxidation and ageing on glyoxal chemistry and uptake onto ammonium sulfate aerosols. Hamilton JF; Baeza-Romero MT; Finessi E; Rickard AR; Healy RM; Peppe S; Adams TJ; Daniels MJ; Ball SM; Goodall IC; Monks PS; Borrás E; Muñoz A Faraday Discuss; 2013; 165():447-72. PubMed ID: 24601017 [TBL] [Abstract][Full Text] [Related]
10. Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies. Waxman EM; Elm J; Kurtén T; Mikkelsen KV; Ziemann PJ; Volkamer R Environ Sci Technol; 2015 Oct; 49(19):11500-8. PubMed ID: 26335375 [TBL] [Abstract][Full Text] [Related]
11. Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. Lee AK; Zhao R; Gao SS; Abbatt JP J Phys Chem A; 2011 Sep; 115(38):10517-26. PubMed ID: 21854005 [TBL] [Abstract][Full Text] [Related]
12. Formation mechanisms and yields of small imidazoles from reactions of glyoxal with NH4(+) in water at neutral pH. Maxut A; Nozière B; Fenet B; Mechakra H Phys Chem Chem Phys; 2015 Aug; 17(31):20416-24. PubMed ID: 26174881 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous glyoxal oxidation: a potential source of secondary organic aerosol. Connelly BM; De Haan DO; Tolbert MA J Phys Chem A; 2012 Jun; 116(24):6180-7. PubMed ID: 22510110 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous chemistry of glyoxal on acidic solutions. An oligomerization pathway for secondary organic aerosol formation. Gomez ME; Lin Y; Guo S; Zhang R J Phys Chem A; 2015 May; 119(19):4457-63. PubMed ID: 25369518 [TBL] [Abstract][Full Text] [Related]
15. Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning. Sareen N; Waxman EM; Turpin BJ; Volkamer R; Carlton AG Environ Sci Technol; 2017 Mar; 51(6):3327-3335. PubMed ID: 28169540 [TBL] [Abstract][Full Text] [Related]
16. Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate. Kampf CJ; Waxman EM; Slowik JG; Dommen J; Pfaffenberger L; Praplan AP; Prévôt AS; Baltensperger U; Hoffmann T; Volkamer R Environ Sci Technol; 2013 May; 47(9):4236-44. PubMed ID: 23534917 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: a computational study. Kua J; Krizner HE; De Haan DO J Phys Chem A; 2011 Mar; 115(9):1667-75. PubMed ID: 21322623 [TBL] [Abstract][Full Text] [Related]
18. Raman spectroscopy of glyoxal oligomers in aqueous solutions. Avzianova E; Brooks SD Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():40-8. PubMed ID: 23099158 [TBL] [Abstract][Full Text] [Related]
19. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol. Tan Y; Perri MJ; Seitzinger SP; Turpin BJ Environ Sci Technol; 2009 Nov; 43(21):8105-12. PubMed ID: 19924930 [TBL] [Abstract][Full Text] [Related]
20. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C. Clegg SL; Wexler AS J Phys Chem A; 2011 Apr; 115(15):3393-460. PubMed ID: 21438504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]