These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21721583)

  • 1. Nonlinear charge transport in redox molecular junctions: a Marcus perspective.
    Migliore A; Nitzan A
    ACS Nano; 2011 Aug; 5(8):6669-85. PubMed ID: 21721583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversibility and hysteresis in redox molecular conduction junctions.
    Migliore A; Nitzan A
    J Am Chem Soc; 2013 Jun; 135(25):9420-32. PubMed ID: 23679824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relationship between molecular state and single electron pictures in simple electrochemical junctions.
    Migliore A; Schiff P; Nitzan A
    Phys Chem Chem Phys; 2012 Oct; 14(40):13746-53. PubMed ID: 22847314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bias-Polarity-Dependent Direct and Inverted Marcus Charge Transport Affecting Rectification in a Redox-Active Molecular Junction.
    Han Y; Nickle C; Maglione MS; Karuppannan SK; Casado-Montenegro J; Qi DC; Chen X; Tadich A; Cowie B; Mas-Torrent M; Rovira C; Cornil J; Veciana J; Del Barco E; Nijhuis CA
    Adv Sci (Weinh); 2021 Jul; 8(14):e2100055. PubMed ID: 34145786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating.
    Yuan L; Wang L; Garrigues AR; Jiang L; Annadata HV; Anguera Antonana M; Barco E; Nijhuis CA
    Nat Nanotechnol; 2018 Apr; 13(4):322-329. PubMed ID: 29581549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge Transfer through Redox Molecular Junctions in Nonequilibrated Solvents.
    Kirchberg H; Thorwart M; Nitzan A
    J Phys Chem Lett; 2020 Mar; 11(5):1729-1737. PubMed ID: 32046482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric properties of Marcus molecular junctions.
    Zimbovskaya NA
    J Phys Condens Matter; 2024 Feb; 36(18):. PubMed ID: 38262055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of charge transport in molecular junctions: from Coulomb blockade to coherent tunneling.
    Chang YW; Jin BY
    J Chem Phys; 2014 Aug; 141(6):064111. PubMed ID: 25134555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of Fermi Level Pinning, Marcus Inverted Transport, and Orbital Gating in Molecular Tunneling Junctions.
    Kang H; Kong GD; Byeon SE; Yang S; Kim JW; Yoon HJ
    J Phys Chem Lett; 2020 Oct; 11(20):8597-8603. PubMed ID: 32976711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges.
    Quek SY; Khoo KH
    Acc Chem Res; 2014 Nov; 47(11):3250-7. PubMed ID: 24933289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the theory of charge transport and entropic effects in solvated molecular junctions.
    Sowa JK; Marcus RA
    J Chem Phys; 2021 Jan; 154(3):034110. PubMed ID: 33499636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions.
    Han Y; Maglione MS; Diez Cabanes V; Casado-Montenegro J; Yu X; Karuppannan SK; Zhang Z; Crivillers N; Mas-Torrent M; Rovira C; Cornil J; Veciana J; Nijhuis CA
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55044-55055. PubMed ID: 33237732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions. II. A self-consistent Born approach.
    Sowa JK; Lambert N; Seideman T; Gauger EM
    J Chem Phys; 2020 Feb; 152(6):064103. PubMed ID: 32061212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the charge flow between Marcus regimes in an organic thin-film device.
    Atxabal A; Arnold T; Parui S; Hutsch S; Zuccatti E; Llopis R; Cinchetti M; Casanova F; Ortmann F; Hueso LE
    Nat Commun; 2019 May; 10(1):2089. PubMed ID: 31064992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular electronics: some views on transport junctions and beyond.
    Joachim C; Ratner MA
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8801-8. PubMed ID: 15956192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observing Donor-to-Acceptor Electron-Transfer Rates and the Marcus Inverted Parabola in Molecular Junctions.
    Valianti S; Skourtis SS
    J Phys Chem B; 2019 Nov; 123(45):9641-9653. PubMed ID: 31633357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.