These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 21721620)

  • 1. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions.
    Komornicki A; King HF
    J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.
    Bubin S; Adamowicz L
    J Chem Phys; 2008 Mar; 128(11):114107. PubMed ID: 18361554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative wavefunction ansatz for including explicit electron-proton correlation in the nuclear-electronic orbital approach.
    Ko C; Pak MV; Swalina C; Hammes-Schiffer S
    J Chem Phys; 2011 Aug; 135(5):054106. PubMed ID: 21823689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
    Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density matrix formulation of the nuclear-electronic orbital approach with explicit electron-proton correlation.
    Chakraborty A; Hammes-Schiffer S
    J Chem Phys; 2008 Nov; 129(20):204101. PubMed ID: 19045846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three- and four-electron integrals involving Gaussian geminals: Fundamental integrals, upper bounds, and recurrence relations.
    Barca GMJ; Loos PF
    J Chem Phys; 2017 Jul; 147(2):024103. PubMed ID: 28711054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula.
    Tachikawa M; Shiga M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056706. PubMed ID: 11736140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.
    Shiozaki T
    J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Libcint: An efficient general integral library for Gaussian basis functions.
    Sun Q
    J Comput Chem; 2015 Aug; 36(22):1664-71. PubMed ID: 26123808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracule functional models. V. Recurrence relations for two-electron integrals in position and momentum space.
    Hollett JW; Gill PM
    Phys Chem Chem Phys; 2011 Feb; 13(7):2972-8. PubMed ID: 21170440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.
    Bubin S; Adamowicz L
    J Chem Phys; 2006 Jun; 124(22):224317. PubMed ID: 16784284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral partition bounds for fast and effective screening of general one-, two-, and many-electron integrals.
    Thompson TH; Ochsenfeld C
    J Chem Phys; 2019 Jan; 150(4):044101. PubMed ID: 30709269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula.
    Kobayashi M; Nakai H
    J Chem Phys; 2004 Sep; 121(9):4050-8. PubMed ID: 15332950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions.
    Chakraborty A; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2008 Jul; 129(1):014101. PubMed ID: 18624464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored Gauss quadratures, a promising route for an efficient evaluation of multicenter integrals over B functions.
    Rebabti A; Ghomari R; Bouferguene A
    J Chem Phys; 2009 May; 130(20):204103. PubMed ID: 19485433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining explicitly correlated R12 and Gaussian geminal electronic structure theories.
    Valeev EF
    J Chem Phys; 2006 Dec; 125(24):244106. PubMed ID: 17199339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions.
    Sandberg JA; Rinkevicius Z
    J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials.
    Ahlrichs R
    Phys Chem Chem Phys; 2006 Jul; 8(26):3072-7. PubMed ID: 16804606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs.
    Duret S; Bouferguene A; Safouhi H
    J Comput Chem; 2008 Apr; 29(6):934-44. PubMed ID: 17999382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.