These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21721622)

  • 1. Development and application of the analytical energy gradient for the normalized elimination of the small component method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2011 Jun; 134(24):244117. PubMed ID: 21721622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method.
    Zou W; Filatov M; Cremer D
    J Chem Theory Comput; 2012 Aug; 8(8):2617-29. PubMed ID: 26592107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2016 Nov; 145(18):184104. PubMed ID: 27846684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2012 Aug; 137(8):084108. PubMed ID: 22938219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical energy gradient for the two-component normalized elimination of the small component method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2015 Jun; 142(21):214106. PubMed ID: 26049478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian.
    Cheng L; Gauss J
    J Chem Phys; 2011 Aug; 135(8):084114. PubMed ID: 21895166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic Calculation of Contact Densities and Mössbauer Isomer Shifts Using the Normalized Elimination of the Small-Component Formalism.
    Filatov M; Zou W; Cremer D
    J Chem Theory Comput; 2012 Mar; 8(3):875-82. PubMed ID: 26593349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.
    Hamaya S; Maeda H; Funaki M; Fukui H
    J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.
    Chiba M; Tsuneda T; Hirao K
    J Chem Phys; 2006 Apr; 124(14):144106. PubMed ID: 16626179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2017 Apr; 146(13):134109. PubMed ID: 28390341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications.
    Filatov M; Cremer D
    J Chem Phys; 2005 Jan; 122(4):44104. PubMed ID: 15740232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.
    Cammi R
    J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients.
    Yamamoto T
    J Chem Phys; 2008 Dec; 129(24):244104. PubMed ID: 19123492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.