These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21721676)

  • 1. A remote scanning Raman spectrometer for in situ measurements of works of art.
    Brambilla A; Osticioli I; Nevin A; Comelli D; D'Andrea C; Lofrumento C; Valentini G; Cubeddu R
    Rev Sci Instrum; 2011 Jun; 82(6):063109. PubMed ID: 21721676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of a portable Raman spectrometer for in situ analysis of art objects.
    Lauwers D; Hutado AG; Tanevska V; Moens L; Bersani D; Vandenabeele P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():294-301. PubMed ID: 24055678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of mobile Raman instrumentation for art analysis.
    Vandenabeele P; Castro K; Hargreaves M; Moens L; Madariaga JM; Edwards HG
    Anal Chim Acta; 2007 Apr; 588(1):108-16. PubMed ID: 17386799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials.
    Osticioli I; Mendes NF; Nevin A; Zoppi A; Lofrumento C; Becucci M; Castellucci EM
    Rev Sci Instrum; 2009 Jul; 80(7):076109. PubMed ID: 19655994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics.
    Daffara C; Pampaloni E; Pezzati L; Barucci M; Fontana R
    Acc Chem Res; 2010 Jun; 43(6):847-56. PubMed ID: 20230039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.
    Casadio F; Leona M; Lombardi JR; Van Duyne R
    Acc Chem Res; 2010 Jun; 43(6):782-91. PubMed ID: 20420359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a scanning angle total internal reflection Raman spectrometer.
    McKee KJ; Smith EA
    Rev Sci Instrum; 2010 Apr; 81(4):043106. PubMed ID: 20441324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prototype hand-held Raman sensor for the in situ characterization of meat quality.
    Schmidt H; Sowoidnich K; Kronfeldt HD
    Appl Spectrosc; 2010 Aug; 64(8):888-94. PubMed ID: 20719051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars.
    Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimization of parameters for application of a laser-induced breakdown spectroscopy microprobe for the analysis of works of art.
    Osticioli I; Wolf M; Anglos D
    Appl Spectrosc; 2008 Nov; 62(11):1242-9. PubMed ID: 19007467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.
    de Oliveira N; Joyeux D; Phalippou D; Rodier JC; Polack F; Vervloet M; Nahon L
    Rev Sci Instrum; 2009 Apr; 80(4):043101. PubMed ID: 19405645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal monitoring: Raman spectrometer system for remote measurement of cellular temperature on a microscopic scale.
    Pikov V; Siegel PH
    IEEE Eng Med Biol Mag; 2010; 29(1):63-71. PubMed ID: 20176524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region.
    Santos LF; Wolthuis R; Koljenović S; Almeida RM; Puppels GJ
    Anal Chem; 2005 Oct; 77(20):6747-52. PubMed ID: 16223266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Man-portable laser-induced breakdown spectroscopy system for in situ characterization of karstic formations.
    Cuñat J; Fortes FJ; Cabalín LM; Carrasco F; Simón MD; Laserna JJ
    Appl Spectrosc; 2008 Nov; 62(11):1250-5. PubMed ID: 19007468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of mobile Raman spectroscopy for rapid evaluation of deteriorating of art materials under UV irradiation].
    Luo XY; Ye F; Wu LM; Yuan SW; Zhang WB; Du YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2405-8. PubMed ID: 21105406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural examination of easel paintings with optical coherence tomography.
    Targowski P; Iwanicka M; Tymińska-Widmer L; Sylwestrzak M; Kwiatkowska EA
    Acc Chem Res; 2010 Jun; 43(6):826-36. PubMed ID: 20043663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.