These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
3. Phase resetting effects for robust cycles between chaotic sets. Ashwin P; Field M; Rucklidge AM; Sturman R Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [TBL] [Abstract][Full Text] [Related]
4. Characterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures. Fazanaro FI; Soriano DC; Suyama R; Attux R; Madrid MK; de Oliveira JR Chaos; 2013 Jun; 23(2):023105. PubMed ID: 23822470 [TBL] [Abstract][Full Text] [Related]
5. Attractor comparisons based on density. Carroll TL Chaos; 2015 Jan; 25(1):013111. PubMed ID: 25637922 [TBL] [Abstract][Full Text] [Related]
6. Monitoring changes in time of chaotic nonlinear systems. Wright J Chaos; 1995 Jun; 5(2):356-366. PubMed ID: 12780189 [TBL] [Abstract][Full Text] [Related]
7. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency. Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475 [TBL] [Abstract][Full Text] [Related]
8. Effect of noise on the neutral direction of chaotic attractor. Lai YC; Liu Z Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060 [TBL] [Abstract][Full Text] [Related]
9. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. Lai YC; Harrison MA; Frei MG; Osorio I Chaos; 2004 Sep; 14(3):630-42. PubMed ID: 15446973 [TBL] [Abstract][Full Text] [Related]
10. Cycles homoclinic to chaotic sets; robustness and resonance. Ashwin P Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649 [TBL] [Abstract][Full Text] [Related]
11. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
12. Low frequency oscillations in semi-insulating GaAs: a nonlinear analysis. Rubinger RM; da Silva RL; de Oliveira AG; Ribeiro GM; Albuquerque HA; Rodrigues WN; Moreira MV Chaos; 2003 Jun; 13(2):457-66. PubMed ID: 12777108 [TBL] [Abstract][Full Text] [Related]
13. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
14. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors. Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634 [TBL] [Abstract][Full Text] [Related]
15. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
16. Chaotic itinerancy generated by coupling of Milnor attractors. Tsuda I; Umemura T Chaos; 2003 Sep; 13(3):937-46. PubMed ID: 12946186 [TBL] [Abstract][Full Text] [Related]
17. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
18. Fractal snapshot components in chaos induced by strong noise. Bódai T; Károlyi G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264 [TBL] [Abstract][Full Text] [Related]
19. Chaotic analysis of electromyography signal at low back and lower limb muscles during forward bending posture. Swie YW; Sakamoto K; Shimizu Y Electromyogr Clin Neurophysiol; 2005; 45(6):329-42. PubMed ID: 16315970 [TBL] [Abstract][Full Text] [Related]