These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21721773)
1. An elementary model of torus canards. Benes GN; Barry AM; Kaper TJ; Kramer MA; Burke J Chaos; 2011 Jun; 21(2):023131. PubMed ID: 21721773 [TBL] [Abstract][Full Text] [Related]
2. Canonical models for torus canards in elliptic bursters. Baspinar E; Avitabile D; Desroches M Chaos; 2021 Jun; 31(6):063129. PubMed ID: 34241290 [TBL] [Abstract][Full Text] [Related]
3. Canards of mixed type in a neural burster. Desroches M; Burke J; Kaper TJ; Kramer MA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021920. PubMed ID: 22463257 [TBL] [Abstract][Full Text] [Related]
4. A showcase of torus canards in neuronal bursters. Burke J; Desroches M; Barry AM; Kaper TJ; Kramer MA J Math Neurosci; 2012 Feb; 2(1):3. PubMed ID: 22657918 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal canards in neural field equations. Avitabile D; Desroches M; Knobloch E Phys Rev E; 2017 Apr; 95(4-1):042205. PubMed ID: 28505875 [TBL] [Abstract][Full Text] [Related]
6. Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Desroches M; Kaper TJ; Krupa M Chaos; 2013 Dec; 23(4):046106. PubMed ID: 24387585 [TBL] [Abstract][Full Text] [Related]
8. Canard-like phenomena in piecewise-smooth Van der Pol systems. Roberts A; Gendinning P Chaos; 2014 Jun; 24(2):023138. PubMed ID: 24985452 [TBL] [Abstract][Full Text] [Related]
9. Amplitude-modulated spiking as a novel route to bursting: Coupling-induced mixed-mode oscillations by symmetry breaking. Pedersen MG; Brøns M; Sørensen MP Chaos; 2022 Jan; 32(1):013121. PubMed ID: 35105132 [TBL] [Abstract][Full Text] [Related]
10. Canards in a minimal piecewise-linear square-wave burster. Desroches M; Fernández-García S; Krupa M Chaos; 2016 Jul; 26(7):073111. PubMed ID: 27475071 [TBL] [Abstract][Full Text] [Related]
11. Saddle Slow Manifolds and Canard Orbits in [Formula: see text] and Application to the Full Hodgkin-Huxley Model. Hasan CR; Krauskopf B; Osinga HM J Math Neurosci; 2018 Apr; 8(1):5. PubMed ID: 29675585 [TBL] [Abstract][Full Text] [Related]
12. Bottom-up approach to torus bifurcation in neuron models. Ju H; Neiman AB; Shilnikov AL Chaos; 2018 Oct; 28(10):106317. PubMed ID: 30384623 [TBL] [Abstract][Full Text] [Related]
13. Feedback control of canards. Durham J; Moehlis J Chaos; 2008 Mar; 18(1):015110. PubMed ID: 18377091 [TBL] [Abstract][Full Text] [Related]
14. Non-Trivial Dynamics in the FizHugh-Rinzel Model and Non-Homogeneous Oscillatory-Excitable Reaction-Diffusions Systems. Ambrosio B; Aziz-Alaoui MA; Mondal A; Mondal A; Sharma SK; Upadhyay RK Biology (Basel); 2023 Jun; 12(7):. PubMed ID: 37508349 [TBL] [Abstract][Full Text] [Related]
15. Symmetry-breaking Hopf bifurcations to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor-Couette flow. Altmeyer S; Do Y; Marques F; Lopez JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046316. PubMed ID: 23214686 [TBL] [Abstract][Full Text] [Related]
16. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. Akman OE; Broomhead DS; Abadi RV; Clement RA J Math Biol; 2005 Dec; 51(6):661-94. PubMed ID: 15940536 [TBL] [Abstract][Full Text] [Related]
17. Anticipation via canards in excitable systems. Köksal Ersöz E; Desroches M; Mirasso CR; Rodrigues S Chaos; 2019 Jan; 29(1):013111. PubMed ID: 30709107 [TBL] [Abstract][Full Text] [Related]
18. Canards and mixed-mode oscillations in a forest pest model. Brøns M; Kaasen R Theor Popul Biol; 2010 Jun; 77(4):238-42. PubMed ID: 20188120 [TBL] [Abstract][Full Text] [Related]
19. Canards for a reduction of the Hodgkin-Huxley equations. Moehlis J J Math Biol; 2006 Feb; 52(2):141-53. PubMed ID: 16195925 [TBL] [Abstract][Full Text] [Related]
20. Symmetry-breaking rhythms in coupled, identical fast-slow oscillators. Awal NM; Epstein IR; Kaper TJ; Vo T Chaos; 2023 Jan; 33(1):011102. PubMed ID: 36725648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]