These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tissue spectroscope: a novel in vivo approach to real time monitoring of tissue vitality. Mayevsky A; Manor T; Pevzner E; Deutsch A; Etziony R; Dekel N; Jaronkin A J Biomed Opt; 2004; 9(5):1028-45. PubMed ID: 15447025 [TBL] [Abstract][Full Text] [Related]
3. The evaluation of brain CBF and mitochondrial function by a fiber optic tissue spectroscope in neurosurgical patients. Mayevsky A; Ornstein E; Meilin S; Razon N; Ouaknine GE Acta Neurochir Suppl; 2002; 81():367-71. PubMed ID: 12168349 [TBL] [Abstract][Full Text] [Related]
4. Real-time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord. Simonovich M; Barbiro-Michaely E; Mayevsky A Spine (Phila Pa 1976); 2008 Nov; 33(23):2495-502. PubMed ID: 18978589 [TBL] [Abstract][Full Text] [Related]
5. Use of NADH fluorescence to determine mitochondrial function in vivo. Mayevsky A; Barbiro-Michaely E Int J Biochem Cell Biol; 2009 Oct; 41(10):1977-88. PubMed ID: 19703658 [TBL] [Abstract][Full Text] [Related]
6. Minimally invasive real time monitoring of mitochondrial NADH and tissue blood flow in the urethral wall during hemorrhage and resuscitation. Clavijo JA; van Bastelaar J; Pinsky MR; Puyana JC; Mayevsky A Med Sci Monit; 2008 Sep; 14(9):BR175-82. PubMed ID: 18758409 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system. Kraut A; Barbiro-Michaely E; Mayevsky A Med Sci Monit; 2004 Jul; 10(7):BR215-20. PubMed ID: 15232495 [TBL] [Abstract][Full Text] [Related]
8. Intraoperative monitoring of cerebral microcirculation and oxygenation--a feasibility study using a novel photo-spectrometric laser-Doppler flowmetry. Klein KU; Schramm P; Glaser M; Reisch R; Tresch A; Werner C; Engelhard K J Neurosurg Anesthesiol; 2010 Jan; 22(1):38-45. PubMed ID: 19816204 [TBL] [Abstract][Full Text] [Related]
9. Combined Laser-Doppler Flowmetry and Spectrophotometry: Feasibility Study of a Novel Device for Monitoring Local Cortical Microcirculation during Aneurysm Surgery. Sommer B; Kreuzer M; Bischoff B; Wolf D; Schmitt H; Eyupoglu IY; Rössler K; Buchfelder M; Ganslandt O; Wiendieck K J Neurol Surg A Cent Eur Neurosurg; 2017 Jan; 78(1):1-11. PubMed ID: 27415594 [No Abstract] [Full Text] [Related]
10. Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury. Luger-Hamer M; Barbiro-Michaely E; Sonn J; Mayevsky A Nephron Clin Pract; 2009; 111(1):c29-38. PubMed ID: 19052468 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Mayevsky A; Rogatsky GG Am J Physiol Cell Physiol; 2007 Feb; 292(2):C615-40. PubMed ID: 16943239 [TBL] [Abstract][Full Text] [Related]
12. Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. Mayevsky A; Barbiro-Michaely E J Clin Monit Comput; 2013 Feb; 27(1):1-34. PubMed ID: 23203204 [TBL] [Abstract][Full Text] [Related]
13. Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mayevsky A; Chance B Mitochondrion; 2007 Sep; 7(5):330-9. PubMed ID: 17576101 [TBL] [Abstract][Full Text] [Related]
14. Optical monitoring of NADH redox state and blood flow as indicators of brain energy balance. Mayevsky A; Meilin S; Manor T; Zarchin N; Sonn J Adv Exp Med Biol; 1999; 471():133-40. PubMed ID: 10659140 [No Abstract] [Full Text] [Related]
15. Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: II: human studies. Mayevsky A; Barbiro-Michaely E J Clin Monit Comput; 2013 Apr; 27(2):125-45. PubMed ID: 23224276 [TBL] [Abstract][Full Text] [Related]
16. Measurement of cortical microcirculation during intracranial aneurysm surgery by combined laser-Doppler flowmetry and photospectrometry. Klein KU; Stadie A; Fukui K; Schramm P; Werner C; Oertel J; Engelhard K; Fischer G Neurosurgery; 2011 Aug; 69(2):391-8. PubMed ID: 21430590 [TBL] [Abstract][Full Text] [Related]
17. Oxygen saturation, red blood cell tissue fraction and speed resolved perfusion - A new optical method for microcirculatory assessment. Jonasson H; Fredriksson I; Pettersson A; Larsson M; Strömberg T Microvasc Res; 2015 Nov; 102():70-7. PubMed ID: 26279347 [TBL] [Abstract][Full Text] [Related]
18. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Mayevsky A; Chance B Science; 1982 Aug; 217(4559):537-40. PubMed ID: 7201167 [TBL] [Abstract][Full Text] [Related]
19. Intraoperative Vascular Neuromonitoring in Patients with Subarachnoid Hemorrhage: A Pilot Study Using Combined Laser-Doppler Spectrophotometry. Schmitz E; Bischoff B; Wolf D; Schmitt HJ; Eyupoglu IY; Roessler K; Buchfelder M; Sommer B World Neurosurg; 2017 Nov; 107():542-548. PubMed ID: 28803174 [TBL] [Abstract][Full Text] [Related]
20. Non-invasive spinal cord oxygenation monitoring: validating collateral network near-infrared spectroscopy for thoracoabdominal aortic aneurysm repair. von Aspern K; Haunschild J; Hoyer A; Luehr M; Bakhtiary F; Misfeld M; Mohr FW; Etz CD Eur J Cardiothorac Surg; 2016 Oct; 50(4):675-683. PubMed ID: 26984979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]