BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 21722106)

  • 1. Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites.
    Caruso T; Taormina M; Migliorini M
    J Anim Ecol; 2012 Jan; 81(1):214-21. PubMed ID: 21722106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales.
    Lindo Z; Winchester NN
    Oecologia; 2009 Jul; 160(4):817-25. PubMed ID: 19412624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The underlying processes of a soil mite metacommunity on a small scale.
    Dong C; Gao M; Guo C; Lin L; Wu D; Zhang L
    PLoS One; 2017; 12(5):e0176828. PubMed ID: 28481906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: the example of oribatid mites in an abandoned mining and smelting area.
    Caruso T; Migliorini M; Bucci C; Bargagli R
    Environ Pollut; 2009 Nov; 157(11):2939-48. PubMed ID: 19586698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.
    Jiménez JJ; Decaëns T; Lavelle P; Rossi JP
    BMC Ecol; 2014 Dec; 14():26. PubMed ID: 25476419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates.
    Thompson R; Townsend C
    J Anim Ecol; 2006 Mar; 75(2):476-84. PubMed ID: 16638000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When can we distinguish between neutral and non-neutral processes in community dynamics under ecological drift?
    Ruokolainen L; Ranta E; Kaitala V; Fowler MS
    Ecol Lett; 2009 Sep; 12(9):909-19. PubMed ID: 19570103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring biodiversity to explain community assembly: a unified approach.
    Pavoine S; Bonsall MB
    Biol Rev Camb Philos Soc; 2011 Nov; 86(4):792-812. PubMed ID: 21155964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem.
    Fischer BM; Schatz H; Maraun M
    Exp Appl Acarol; 2010 Nov; 52(3):221-37. PubMed ID: 20490626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds.
    Gómez JP; Bravo GA; Brumfield RT; Tello JG; Cadena CD
    J Anim Ecol; 2010 Nov; 79(6):1181-92. PubMed ID: 20642767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concordance and discordance between taxonomic and functional homogenization: responses of soil mite assemblages to forest conversion.
    Mori AS; Ota AT; Fujii S; Seino T; Kabeya D; Okamoto T; Ito MT; Kaneko N; Hasegawa M
    Oecologia; 2015 Oct; 179(2):527-35. PubMed ID: 26001603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.
    Liu J; Gao M; Liu J; Guo Y; Liu D; Zhu X; Wu D
    PLoS One; 2018; 13(6):e0199093. PubMed ID: 29953452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity.
    Cianciolo JM; Norton RA
    Exp Appl Acarol; 2006; 40(1):1-25. PubMed ID: 16900312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the natural variation of oribatid mite communities with their changes associated with anthropogenic disturbance.
    Gergócs V; Hufnagel L
    Environ Monit Assess; 2017 Apr; 189(4):203. PubMed ID: 28364329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic and deterministic processes jointly structure tropical arthropod communities.
    Ellwood MD; Manica A; Foster WA
    Ecol Lett; 2009 Apr; 12(4):277-84. PubMed ID: 19220392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).
    Erdmann G; Scheu S; Maraun M
    Exp Appl Acarol; 2012 Jun; 57(2):157-69. PubMed ID: 22460402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites.
    Ruf A; Beck L
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):290-9. PubMed ID: 15979713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fungicides and biofungicides on population density and community structure of soil oribatid mites.
    Al-Assiuty AN; Khalil MA; Ismail AW; van Straalen NM; Ageba MF
    Sci Total Environ; 2014 Jan; 466-467():412-20. PubMed ID: 23933448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes.
    Zhang X; Johnston ER; Liu W; Li L; Han X
    Glob Chang Biol; 2016 Jan; 22(1):198-207. PubMed ID: 26340501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative roles of niche and neutral processes in structuring a soil microbial community.
    Dumbrell AJ; Nelson M; Helgason T; Dytham C; Fitter AH
    ISME J; 2010 Mar; 4(3):337-45. PubMed ID: 19924158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.