BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 21722106)

  • 21. Oribatid mites reveal that competition for resources and trophic structure combine to regulate the assembly of diverse soil animal communities.
    Magilton M; Maraun M; Emmerson M; Caruso T
    Ecol Evol; 2019 Jul; 9(14):8320-8330. PubMed ID: 31380092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial patterns and ecological drivers of soil nematode β-diversity in natural grasslands vary among vegetation types and trophic position.
    Xiong D; Wei C; Wang X; Lü X; Fang S; Li Y; Wang X; Liang W; Han X; Bezemer TM; Li Q
    J Anim Ecol; 2021 May; 90(5):1367-1378. PubMed ID: 33660855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs.
    Minor MA; Ermilov SG; Philippov DA; Prokin AA
    Exp Appl Acarol; 2016 Nov; 70(3):275-286. PubMed ID: 27497590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dispersal limitation and environmental structure interact to restrict the occupation of optimal habitat.
    Pinto SM; MacDougall AS
    Am Nat; 2010 Jun; 175(6):675-86. PubMed ID: 20397925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rethinking the linear regression model for spatial ecological data.
    Wagner HH
    Ecology; 2013 Nov; 94(11):2381-91. PubMed ID: 24400490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: The stabilizing role of forest age on oribatid mite communities.
    Caruso T; Melecis V; Kagainis U; Bolger T
    J Anim Ecol; 2020 Jun; 89(6):1520-1531. PubMed ID: 32153026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodiversity conservation in metacommunity networks: linking pattern and persistence.
    Economo EP
    Am Nat; 2011 Jun; 177(6):E167-80. PubMed ID: 21597247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecosystemic, climatic and temporal differences in oribatid communities (Acari: Oribatida) from forest soils.
    Corral-Hernández E; Balanzategui I; Iturrondobeitia JC
    Exp Appl Acarol; 2016 Aug; 69(4):389-401. PubMed ID: 27193341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales.
    Tello JS; Myers JA; Macía MJ; Fuentes AF; Cayola L; Arellano G; Loza MI; Torrez V; Cornejo M; Miranda TB; Jørgensen PM
    PLoS One; 2015; 10(3):e0121458. PubMed ID: 25803846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of temporal resolution on species turnover and on testing metacommunity models.
    Tomasových A; Kidwell SM
    Am Nat; 2010 May; 175(5):587-606. PubMed ID: 20302427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests.
    Kembel SW
    Ecol Lett; 2009 Sep; 12(9):949-60. PubMed ID: 19702749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference.
    Jabot F; Chave J
    Am Nat; 2011 Aug; 178(2):E37-47. PubMed ID: 21750378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications of spatial heterogeneity for management of marine protected areas (MPAs): examples from assemblages of rocky coasts in the northwest Mediterranean.
    Benedetti-Cecchi L; Bertocci I; Micheli F; Maggi E; Fosella T; Vaselli S
    Mar Environ Res; 2003 May; 55(5):429-58. PubMed ID: 12628195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disturbance, neutral theory, and patterns of beta diversity in soil communities.
    Maaß S; Migliorini M; Rillig MC; Caruso T
    Ecol Evol; 2014 Dec; 4(24):4766-74. PubMed ID: 25558367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of spatial processes and topography on structuring species assemblages in a Sri Lankan dipterocarp forest.
    Punchi-Manage R; Wiegand T; Wiegand K; Getzin S; Gunatilleke CV; Gunatilleke IA
    Ecology; 2014 Feb; 95(2):376-86. PubMed ID: 24669731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling Bacterial Community Assembly to Microbial Metabolism across Soil Profiles.
    Luan L; Liang C; Chen L; Wang H; Xu Q; Jiang Y; Sun B
    mSystems; 2020 Jun; 5(3):. PubMed ID: 32518195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation in trophic niches of oribatid mites in temperate forest ecosystems as indicated by neutral lipid fatty acid patterns.
    Maraun M; Augustin D; Pollierer MM; Scheu S
    Exp Appl Acarol; 2020 May; 81(1):103-115. PubMed ID: 32347428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance.
    Ferrenberg S; Martinez AS; Faist AM
    PeerJ; 2016; 4():e2545. PubMed ID: 27761333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classic metapopulations are rare among common beetle species from a naturally fragmented landscape.
    Driscoll DA; Kirkpatrick JB; McQuillan PB; Bonham KJ
    J Anim Ecol; 2010 Jan; 79(1):294-303. PubMed ID: 19694875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages.
    Minor MA; Ermilov SG; Tiunov AV
    Exp Appl Acarol; 2017 Dec; 73(3-4):365-381. PubMed ID: 29128984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.