These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21722738)

  • 21. EEG and ECG changes during selected flight sequences.
    Dussault C; Jouanin JC; Guezennec CY
    Aviat Space Environ Med; 2004 Oct; 75(10):889-97. PubMed ID: 15497370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural and psychophysiological correlates of human performance under stress and high mental workload.
    Mandrick K; Peysakhovich V; Rémy F; Lepron E; Causse M
    Biol Psychol; 2016 Dec; 121(Pt A):62-73. PubMed ID: 27725244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mental workload in air traffic control: an index constructed from field tests.
    Averty P; Collet C; Dittmar A; Athènes S; Vernet-Maury E
    Aviat Space Environ Med; 2004 Apr; 75(4):333-41. PubMed ID: 15086123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a mental workload index: a systems approach.
    Pretorius A; Cilliers PJ
    Ergonomics; 2007 Sep; 50(9):1503-15. PubMed ID: 17654038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transitions Between Low and High Levels of Mental Workload can Improve Multitasking Performance.
    Devlin SP; Moacdieh NM; Wickens CD; Riggs SL
    IISE Trans Occup Ergon Hum Factors; 2020; 8(2):72-87. PubMed ID: 32673167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Task difficulty and physiological measures of mental workload in air traffic control: a scoping review.
    Pagnotta M; Jacobs DM; de Frutos PL; Rodríguez R; Ibáñez-Gijón J; Travieso D
    Ergonomics; 2022 Aug; 65(8):1095-1118. PubMed ID: 34904533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cervicobrachial muscle response to cognitive load in a dual-task scenario.
    Leyman E; Mirka G; Kaber D; Sommerich C
    Ergonomics; 2004 May; 47(6):625-45. PubMed ID: 15204291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: A systematic review of an emerging area of research.
    Agbangla NF; Audiffren M; Albinet CT
    Ageing Res Rev; 2017 Sep; 38():52-66. PubMed ID: 28755870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding.
    Wilson GF; Russell CA
    Hum Factors; 2007 Dec; 49(6):1005-18. PubMed ID: 18074700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The psychometrics of mental workload: multiple measures are sensitive but divergent.
    Matthews G; Reinerman-Jones LE; Barber DJ; Abich J
    Hum Factors; 2015 Feb; 57(1):125-43. PubMed ID: 25790574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An optical brain computer interface for environmental control.
    Ayaz H; Shewokis PA; Bunce S; Onaral B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6327-30. PubMed ID: 22255785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of the RoboFlag synthetic task environment to investigate workload and stress responses in UAV operation.
    Guznov S; Matthews G; Funke G; Dukes A
    Behav Res Methods; 2011 Sep; 43(3):771-80. PubMed ID: 21487900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared spectroscopy (NIRS) in cognitive neuroscience of the primate brain.
    Fuster J; Guiou M; Ardestani A; Cannestra A; Sheth S; Zhou YD; Toga A; Bodner M
    Neuroimage; 2005 May; 26(1):215-20. PubMed ID: 15862221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating mental workload through event-related fluctuations of pupil area during a task in a virtual world.
    Reiner M; Gelfeld TM
    Int J Psychophysiol; 2014 Jul; 93(1):38-44. PubMed ID: 24291237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification.
    Baldwin CL; Penaranda BN
    Neuroimage; 2012 Jan; 59(1):48-56. PubMed ID: 21835243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring performance of professional and occupational operators.
    Borghini G; Ronca V; Vozzi A; Aricò P; Di Flumeri G; Babiloni F
    Handb Clin Neurol; 2020; 168():199-205. PubMed ID: 32164853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight.
    Manzey D; Lorenz B; Poljakov V
    Ergonomics; 1998 Apr; 41(4):537-59. PubMed ID: 9557591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.