These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 21722763)
41. Architectural hallmarks of the pluripotent genome. Bouwman BA; de Laat W FEBS Lett; 2015 Oct; 589(20 Pt A):2905-13. PubMed ID: 25957773 [TBL] [Abstract][Full Text] [Related]
42. The transcriptional network controlling pluripotency in ES cells. Orkin SH; Wang J; Kim J; Chu J; Rao S; Theunissen TW; Shen X; Levasseur DN Cold Spring Harb Symp Quant Biol; 2008; 73():195-202. PubMed ID: 19478325 [TBL] [Abstract][Full Text] [Related]
43. The coupling of X-chromosome inactivation to pluripotency. Deuve JL; Avner P Annu Rev Cell Dev Biol; 2011; 27():611-29. PubMed ID: 21801017 [TBL] [Abstract][Full Text] [Related]
44. Tackling the epigenome in the pluripotent stem cells. Zhao X; Ruan Y; Wei CL J Genet Genomics; 2008 Jul; 35(7):403-12. PubMed ID: 18640620 [TBL] [Abstract][Full Text] [Related]
45. Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Greenow K; Clarke AR Physiol Rev; 2012 Jan; 92(1):75-99. PubMed ID: 22298652 [TBL] [Abstract][Full Text] [Related]
46. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency. Artyomov MN; Meissner A; Chakraborty AK PLoS Comput Biol; 2010 May; 6(5):e1000785. PubMed ID: 20485562 [TBL] [Abstract][Full Text] [Related]
47. Mediators of reprogramming: transcription factors and transitions through mitosis. Egli D; Birkhoff G; Eggan K Nat Rev Mol Cell Biol; 2008 Jul; 9(7):505-16. PubMed ID: 18568039 [TBL] [Abstract][Full Text] [Related]
48. The transcriptional and signalling networks of pluripotency. Ng HH; Surani MA Nat Cell Biol; 2011 May; 13(5):490-6. PubMed ID: 21540844 [TBL] [Abstract][Full Text] [Related]
49. MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior. Balzano F; Cruciani S; Basoli V; Santaniello S; Facchin F; Ventura C; Maioli M Molecules; 2018 Jan; 23(2):. PubMed ID: 29385685 [TBL] [Abstract][Full Text] [Related]
51. From pluripotency to differentiation: laying foundations for the body pattern in the mouse embryo. Zernicka-Goetz M; Hadjantonakis AK Philos Trans R Soc Lond B Biol Sci; 2014 Dec; 369(1657):. PubMed ID: 25349444 [No Abstract] [Full Text] [Related]
52. Pluripotency re-centered around Esrrb. Papp B; Plath K EMBO J; 2012 Nov; 31(22):4255-7. PubMed ID: 23064149 [TBL] [Abstract][Full Text] [Related]
53. Epigenetic Nanog regulation and the role of functional heterogeneity. Herberg M; Roeder I Cell Cycle; 2011 Jul; 10(14):2252-3. PubMed ID: 21670592 [No Abstract] [Full Text] [Related]
55. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. Mitra MK; Taylor PR; Hutchison CJ; McLeish TC; Chakrabarti B J R Soc Interface; 2014 Nov; 11(100):20140706. PubMed ID: 25165605 [TBL] [Abstract][Full Text] [Related]
56. The evolving biology of small molecules: controlling cell fate and identity. Efe JA; Ding S Philos Trans R Soc Lond B Biol Sci; 2011 Aug; 366(1575):2208-21. PubMed ID: 21727126 [TBL] [Abstract][Full Text] [Related]
57. [Epigenetic regulation and molecular mechanisms of cellular senescence by tumor suppressor p53]. Tanaka T; Yokote K Nihon Ronen Igakkai Zasshi; 2011; 48(2):134-7. PubMed ID: 21778627 [No Abstract] [Full Text] [Related]
58. Machine learning uncovers cell identity regulator by histone code. Xia B; Zhao D; Wang G; Zhang M; Lv J; Tomoiaga AS; Li Y; Wang X; Meng S; Cooke JP; Cao Q; Zhang L; Chen K Nat Commun; 2020 Jun; 11(1):2696. PubMed ID: 32483223 [TBL] [Abstract][Full Text] [Related]
59. Bioprocessing Strategies for Pluripotent Stem Cells Based on Waddington's Epigenetic Landscape. Kim MH; Kino-Oka M Trends Biotechnol; 2018 Jan; 36(1):89-104. PubMed ID: 29122288 [TBL] [Abstract][Full Text] [Related]